The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian componen...The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.展开更多
Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter da...Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.展开更多
For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from ...By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress.展开更多
Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth...Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy con-sumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.展开更多
GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeter...GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.展开更多
HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be cal...HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation- al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo- ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari- able. The regression equation of hs is hs (HY-2)=0.891 × hs (NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 rain at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.展开更多
The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ bu...The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.展开更多
Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages...Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages of product evaluation of PDRA which means the designations of PDRA are successful or not, the usage of ETR are indispensable, so the terrain return from spherical earth is critically important. A complete analytic derivation of the antenna shot section model of PDRA and the bright section model constrained by pulse emitted from antenna are given. Furthermore, the doppler effect mode and the earth terrain RCF (radar crossing factor) model are constructively analyzed. Then, the computing methodology on PDRA, which are used to compute the scattering power, scattering doppler spectrum, and the scattering signal, is studied. Besides, in order to check the correctness and efficiency of the algorithm, computing examples of ETR (earth terrain return) under the supposing premises are furnished. Finally, the conclusion is drawn that the models and algorithm are rational, the computational precise is satisfactory, the cost of computing time is low.展开更多
Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assess...Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assessed by examining the sensor geophysical data record and illustrates how the measured return waveform, significant wave height, and backscatter are all affected by various factors associated with the typhoon, with details by the rain are illustrated. The correction method to maintain accurate wave height and wind speed measurements in Typhoon Shanshan and the results are presented. Furthermore, the additional results of rain rate and typhoon eye diameter can be retrieved. Because of the lack of in-situ measurements of wind, wave, and rain rate at Typhoon Shanshan, results are compared with the forecasted typhoon data and a good agreement is found.展开更多
Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are ...Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are described. The ratio, instead of the energy itself, of the energy corresponding to certain frequency band from power spectrum relative to the total energy in the 20~143 d range is analyzed. The results show that the period of the most energetic oscillations in this band increases with latitude from about 1 month near the tropics to about 4 months near 30°, in agreement with the latitudinal dependency of the phase speed of westward propagating long Rossby waves,which dominate the variability in those latitudes.As a result,the global spatial distributions of the period of the dominant oscillations are largely zonal, with relatively small differences between different ocean basins. It suggests that the oscillations with periods around 60 d are mainly associated with planetary Rossby waves except the often regarded as tidal aliasing.展开更多
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational signif...Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.展开更多
With the launch of altimeter,much effort has been made to develop algorithms on the wind speed and the wave period.By using a large data set of collocated altimeter and buoy measurements,the typical wind speed and wav...With the launch of altimeter,much effort has been made to develop algorithms on the wind speed and the wave period.By using a large data set of collocated altimeter and buoy measurements,the typical wind speed and wave period algorithms are validated.Based on theoretical argument and the concept of wave age,a semi-empirical algorithm for the wave period is also proposed,which has the wave-period dimension,and explicitly demonstrates the relationships between the wave period and the other variables.It is found that Ku and C band data should be applied simultaneously in order to improve either wind speed or wave period algorithms.The dual-band algorithms proposed by Chen et al.(2002) for the wind speed and Quilfen et al.(2004) for the wave period perform best in terms of a root mean square error in the practical applications.展开更多
Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. Th...Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. The results showed that the obtained co tidal and co range charts for these major tidal constituents agreed well with those of previous researches using observational data from coastal tidal gauge stations and numerical models.展开更多
Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its cali...Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.展开更多
An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height...An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height (SSH) at the Tianheng Island (tidal gauge) and the satellite nadir (GPS buoy). Using Geoid/MSS (mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD (tidal model driver), which canceled out the time-varying offsets, nadir SSH (sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of (1.88±0.20) cm and a standard deviation of 3,3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation (Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.展开更多
The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on ...The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.展开更多
In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,...In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,facilitating further understanding of the oceanic environmental characteristics of this region.With the develop-ment of technology and the improvement of data processing methods,the accuracy of satellite altimeter productsis constantly improved,thus making it possible to inspect and evaluate the in-situ observation data.Based on theL3 products of multiple satellite altimeters,this paper analyzes and corrects the significant wave height(SWH)data of WEMB by means of data matching,error statistics,and linear least-squares fitting.Through this study,the authors obtained the following results.The effect of gravitational acceleration changes with latitude on SWHaccuracy is fairly small.Due to the low response of WEMB to high-frequency waves,there is a systematic devia-tion.A feasible correction method is therefore proposed to improve the SWH accuracy of WEMB.The temporalvariation of the corrected SWH is highly consistent with that of the 10 m wind during the observation period,and its average value reaches 3.8 m.展开更多
For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire Eas...For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire East China Sea, ocean wave periods were calculated and statistical comparison among them was performed. The retrieved mean wave period 〈T〉 obtained with our new distribution parameters showed better agreement with the wave period TB measured by buoy than that calculated by other three algorithms. The difference between the mean values of 〈T〉 and that of TB is 0.16 s and the RMSE (root mean square error) of 〈T〉 is the lowest value (0.48).展开更多
HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has...HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.展开更多
基金support from the National Natural Science Foundation of China(No.42274006,42192535,42242015).
文摘The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.
基金The National Natural Science Foundation of China under contract No.42076235.
文摘Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
基金Supported by the National Basic Research Program of China (973 Program, Nos. 2007CB411804, 2005CB422303)the NSFC (No. 40706006)+2 种基金the Key Project of International Science and Technology Cooperation Program of China (No. 2006DFB21250)the "111 Project" (B07036)the Program for New Century Excellent Talents in University (NECT-07-0781)
文摘By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress.
基金The Ocean Renewable Energy Special Fund Project of the State Oceanic Administration of China under contract No.GHME2011ZC07the Dragon Ⅲ Project of the European Space Agency and Ministry of Science and Technology of China under contract No.10412
文摘Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy con-sumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.
基金Supported by the National Key R&D Program of China(No.2016YFC1401003)the National Natural Science Foundation of China(Nos.41406204,41501417)the Marine Public Welfare Project of China(No.201305032-3)
文摘GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.
基金The Special Funds of State Oceanic Administration for Marine Commonweal Research under contract Nos 201105032-1and 201305032the Special Project of State Oceanic Administration of Poles Environmental Investigation and Assessment under contract No.CHINARE2012-02-04the European Space Agency (ESA)-Minister of Science and Technology of the Peoples Republic of China (MOST) Dragon 3 Cooperation Programme under contract No.10466
文摘HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation- al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo- ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari- able. The regression equation of hs is hs (HY-2)=0.891 × hs (NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 rain at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.
基金The Marine Public Welfare Project of China under contract No.201105032the National High-Tech Project of China undercontract No.2008AA09A403the fund of State Administration for Science,Technology and Industry for National Defense
文摘The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.
文摘Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages of product evaluation of PDRA which means the designations of PDRA are successful or not, the usage of ETR are indispensable, so the terrain return from spherical earth is critically important. A complete analytic derivation of the antenna shot section model of PDRA and the bright section model constrained by pulse emitted from antenna are given. Furthermore, the doppler effect mode and the earth terrain RCF (radar crossing factor) model are constructively analyzed. Then, the computing methodology on PDRA, which are used to compute the scattering power, scattering doppler spectrum, and the scattering signal, is studied. Besides, in order to check the correctness and efficiency of the algorithm, computing examples of ETR (earth terrain return) under the supposing premises are furnished. Finally, the conclusion is drawn that the models and algorithm are rational, the computational precise is satisfactory, the cost of computing time is low.
基金The National Natural Science Foundation of China under contract No. 30671619
文摘Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assessed by examining the sensor geophysical data record and illustrates how the measured return waveform, significant wave height, and backscatter are all affected by various factors associated with the typhoon, with details by the rain are illustrated. The correction method to maintain accurate wave height and wind speed measurements in Typhoon Shanshan and the results are presented. Furthermore, the additional results of rain rate and typhoon eye diameter can be retrieved. Because of the lack of in-situ measurements of wind, wave, and rain rate at Typhoon Shanshan, results are compared with the forecasted typhoon data and a good agreement is found.
文摘Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are described. The ratio, instead of the energy itself, of the energy corresponding to certain frequency band from power spectrum relative to the total energy in the 20~143 d range is analyzed. The results show that the period of the most energetic oscillations in this band increases with latitude from about 1 month near the tropics to about 4 months near 30°, in agreement with the latitudinal dependency of the phase speed of westward propagating long Rossby waves,which dominate the variability in those latitudes.As a result,the global spatial distributions of the period of the dominant oscillations are largely zonal, with relatively small differences between different ocean basins. It suggests that the oscillations with periods around 60 d are mainly associated with planetary Rossby waves except the often regarded as tidal aliasing.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105032,201305032 and 201005030the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A505+2 种基金Global Change and Air-Sea Interaction Project of China under contract No.GASI-03-03-01-01the International Science&Technology Cooperation Program of China under contract No.2011DFA22260the Open funds of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1411
文摘Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.
基金The National Natural Science Foundation of China under contract Nos 41076007 and 40676014the National Basic Research Program of China under contract No. 2009CB421201the Program of Introducing Talents of Discipline to Universities of China under contract No. B07036
文摘With the launch of altimeter,much effort has been made to develop algorithms on the wind speed and the wave period.By using a large data set of collocated altimeter and buoy measurements,the typical wind speed and wave period algorithms are validated.Based on theoretical argument and the concept of wave age,a semi-empirical algorithm for the wave period is also proposed,which has the wave-period dimension,and explicitly demonstrates the relationships between the wave period and the other variables.It is found that Ku and C band data should be applied simultaneously in order to improve either wind speed or wave period algorithms.The dual-band algorithms proposed by Chen et al.(2002) for the wind speed and Quilfen et al.(2004) for the wave period perform best in terms of a root mean square error in the practical applications.
文摘Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. The results showed that the obtained co tidal and co range charts for these major tidal constituents agreed well with those of previous researches using observational data from coastal tidal gauge stations and numerical models.
基金The National Key R&D Program of China under contract Nos 2018YFB0504900 and 2018YFB0504904the National Natural Science Foundation of China under contract Nos 41406204 and 41501417the Operational Support Service System for Natural Resources Satellite Remote Sensing under contract No.180019。
文摘Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.
基金The Marine Public Welfare Projects of China under contract No.201105032the National High-Tech Project of China under contract No.2008AA09A403
文摘An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height (SSH) at the Tianheng Island (tidal gauge) and the satellite nadir (GPS buoy). Using Geoid/MSS (mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD (tidal model driver), which canceled out the time-varying offsets, nadir SSH (sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of (1.88±0.20) cm and a standard deviation of 3,3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation (Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.
基金The National Key Research and Development Program of China under contract No.2016YFC1401004the National Natural Science Foundation of China under contract No.41406207
文摘The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.
基金supported by the National Key R&D Program of China[grant number 2017YFC1403300 and 2016YFC1401701]。
文摘In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,facilitating further understanding of the oceanic environmental characteristics of this region.With the develop-ment of technology and the improvement of data processing methods,the accuracy of satellite altimeter productsis constantly improved,thus making it possible to inspect and evaluate the in-situ observation data.Based on theL3 products of multiple satellite altimeters,this paper analyzes and corrects the significant wave height(SWH)data of WEMB by means of data matching,error statistics,and linear least-squares fitting.Through this study,the authors obtained the following results.The effect of gravitational acceleration changes with latitude on SWHaccuracy is fairly small.Due to the low response of WEMB to high-frequency waves,there is a systematic devia-tion.A feasible correction method is therefore proposed to improve the SWH accuracy of WEMB.The temporalvariation of the corrected SWH is highly consistent with that of the 10 m wind during the observation period,and its average value reaches 3.8 m.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476008).
文摘For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire East China Sea, ocean wave periods were calculated and statistical comparison among them was performed. The retrieved mean wave period 〈T〉 obtained with our new distribution parameters showed better agreement with the wave period TB measured by buoy than that calculated by other three algorithms. The difference between the mean values of 〈T〉 and that of TB is 0.16 s and the RMSE (root mean square error) of 〈T〉 is the lowest value (0.48).
基金The National Natural Science Foundation of China under contract No.41906199the Youth Innovation Project of National Space Science Center of Chinese Academy of Sciences under contract No.E0PD40012S。
文摘HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.