Such characteristics of aluminium strip and foil as soft and thin gauge make tension control one of the key techniques for automation gauge control(AGC). To avoid the disadvantage of traditional mathematical control m...Such characteristics of aluminium strip and foil as soft and thin gauge make tension control one of the key techniques for automation gauge control(AGC). To avoid the disadvantage of traditional mathematical control method which is unfitful for nonlinear hysteresis, the technique for tension AGC fuzzy control was developed and thickness deviation more than 3% of product thickness was achieved consequently in 1 350 mm cold rolling mill of aluminium strip and foil. Additionally, because the gauge of aluminium strip and foil is thin, stage-cooling roll method becomes a key technique for profile control. So stage-cooling roll intelligent control method is developed and pre-coated aluminum foil with good profile less than 10 I (the relative differences in elongation of 0.01%) is produced using the profile control system in 1 400 mm cold rolling mill of aluminium strip and foil.展开更多
Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) den...Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, respectively, one of the gap values, the critical temperature and the T-dependent critical current density. This framework, which extends our earlier study that dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to T-dependent values of several other related parameters such as the effective mass of electrons, their number density, critical velocity, Fermi velocity (VF), coherence length and the London penetration depth. The extended framework is applied to the jc(T) data reported by Romijn et al. for superconducting Aluminium strips and is shown not only to provide an alternative to the explanation given by them, but also to some novel features such as the role of the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) in the context of a recent finding by Plumb et al. about the superconductivity of Bi-2212.展开更多
文摘Such characteristics of aluminium strip and foil as soft and thin gauge make tension control one of the key techniques for automation gauge control(AGC). To avoid the disadvantage of traditional mathematical control method which is unfitful for nonlinear hysteresis, the technique for tension AGC fuzzy control was developed and thickness deviation more than 3% of product thickness was achieved consequently in 1 350 mm cold rolling mill of aluminium strip and foil. Additionally, because the gauge of aluminium strip and foil is thin, stage-cooling roll method becomes a key technique for profile control. So stage-cooling roll intelligent control method is developed and pre-coated aluminum foil with good profile less than 10 I (the relative differences in elongation of 0.01%) is produced using the profile control system in 1 400 mm cold rolling mill of aluminium strip and foil.
文摘Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, respectively, one of the gap values, the critical temperature and the T-dependent critical current density. This framework, which extends our earlier study that dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to T-dependent values of several other related parameters such as the effective mass of electrons, their number density, critical velocity, Fermi velocity (VF), coherence length and the London penetration depth. The extended framework is applied to the jc(T) data reported by Romijn et al. for superconducting Aluminium strips and is shown not only to provide an alternative to the explanation given by them, but also to some novel features such as the role of the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) in the context of a recent finding by Plumb et al. about the superconductivity of Bi-2212.