Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Phys...Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Physical properties of the specimens heat treated at different temperatures were tested and compared. The results show that the specimen bonded by sodium silicate behaves much higher strength after fired at 1 600 ℃ compared with the specimen, bonded by phosphoric acid or aluminium dihydrogen phosphate. Due to more liquid phase formation the properties of specimen bonded by sodium silicate are poor with a low strength and a large volume shrinkage at high temperatures. Meanwhile. the speeimen bonded by phosphoric acid and aluminium dihydrogen phosphate, respectively, show relatively high strengths and slight volume expansions at high temperatures because of in-situ mullite formation.展开更多
文摘Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Physical properties of the specimens heat treated at different temperatures were tested and compared. The results show that the specimen bonded by sodium silicate behaves much higher strength after fired at 1 600 ℃ compared with the specimen, bonded by phosphoric acid or aluminium dihydrogen phosphate. Due to more liquid phase formation the properties of specimen bonded by sodium silicate are poor with a low strength and a large volume shrinkage at high temperatures. Meanwhile. the speeimen bonded by phosphoric acid and aluminium dihydrogen phosphate, respectively, show relatively high strengths and slight volume expansions at high temperatures because of in-situ mullite formation.