A rapid and practical green route for the N-formylation of amines with formic acid using Amberlite IR-120 as a catalyst is described.This method provides an efficient and much improved modification over the reported m...A rapid and practical green route for the N-formylation of amines with formic acid using Amberlite IR-120 as a catalyst is described.This method provides an efficient and much improved modification over the reported methods in terms of yield,reaction time,and work-up procedure.A wide variety of substituents is tolerated,which is not the case for existing procedures.展开更多
The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-u...The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-univalent ion exchange reaction systems were observed to increase with rise in temperature, indicating endothermic ion exchange reactions. From the K values calculated at different temperatures the enthalpy values were calculated. The low enthalpy and higher K values for K+ ion ex-change reaction indicates more affinity of the resin for potassium ions as compared to that for sodium ions also in the solution. The technique used in the present experimental work will be useful in understanding the selectivity behav-iour of different ion exchange resins for ions in the solution. Although the ionic selectivity data for the ion exchange resins is readily available in the literature, it is expected that the informa-tion obtained from the actual experimental trials will be more helpful. The technique used in the present experimental work when applied to dif-ferent ion exchange resins will help in there characterization.展开更多
The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other simila...The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other similar resins. The parameters that were optimized include effect of mixing time, pH, loading and elution behaviours of chromium(III) for this resin. Sorption of chromium(III) on Amberlite IR 120 followed Freundlich isotherm and Langmuir isotherm model, and the maximum sorption capacity was determined to be 142.86 mg Cr(III)/g of the resin. Higher Freundlich constant (Kf) values (6.30 and 13.46 for aqueous feed of 500 and 1000 ppm Cr(III)) indicated strong chemical interaction through ion exchange mechanism of the metal ion with the resin. The kinetic data showed good fit to the Lagergren first order model for extraction of chromium(III). Desorption of chromium(III) from the loaded resin increased with the increase in concentration of eluent (5-20% H2SO4). With 20% (v/v) sulphuric acid solution 94% chromium(III) was eluted in three stages. Elution of the Cr(III) in the column experiments was however, found to be lower (82%) than that of the shake flask data. In case of Indian tannery’s waste solution, it was observed that almost total chromium was extracted in four stages with Amberlite IR 120.展开更多
文摘A rapid and practical green route for the N-formylation of amines with formic acid using Amberlite IR-120 as a catalyst is described.This method provides an efficient and much improved modification over the reported methods in terms of yield,reaction time,and work-up procedure.A wide variety of substituents is tolerated,which is not the case for existing procedures.
文摘The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-univalent ion exchange reaction systems were observed to increase with rise in temperature, indicating endothermic ion exchange reactions. From the K values calculated at different temperatures the enthalpy values were calculated. The low enthalpy and higher K values for K+ ion ex-change reaction indicates more affinity of the resin for potassium ions as compared to that for sodium ions also in the solution. The technique used in the present experimental work will be useful in understanding the selectivity behav-iour of different ion exchange resins for ions in the solution. Although the ionic selectivity data for the ion exchange resins is readily available in the literature, it is expected that the informa-tion obtained from the actual experimental trials will be more helpful. The technique used in the present experimental work when applied to dif-ferent ion exchange resins will help in there characterization.
文摘The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other similar resins. The parameters that were optimized include effect of mixing time, pH, loading and elution behaviours of chromium(III) for this resin. Sorption of chromium(III) on Amberlite IR 120 followed Freundlich isotherm and Langmuir isotherm model, and the maximum sorption capacity was determined to be 142.86 mg Cr(III)/g of the resin. Higher Freundlich constant (Kf) values (6.30 and 13.46 for aqueous feed of 500 and 1000 ppm Cr(III)) indicated strong chemical interaction through ion exchange mechanism of the metal ion with the resin. The kinetic data showed good fit to the Lagergren first order model for extraction of chromium(III). Desorption of chromium(III) from the loaded resin increased with the increase in concentration of eluent (5-20% H2SO4). With 20% (v/v) sulphuric acid solution 94% chromium(III) was eluted in three stages. Elution of the Cr(III) in the column experiments was however, found to be lower (82%) than that of the shake flask data. In case of Indian tannery’s waste solution, it was observed that almost total chromium was extracted in four stages with Amberlite IR 120.