期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Nitrification intensity and ammonia-oxidizing bacteria and archaea in different wetland plant rhizosphere soils 被引量:1
1
作者 Yan Chunni Huang Juan +3 位作者 Yang Sisi Cao Chong Peng Cheng Li Runqing 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期466-472,共7页
In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Ac... In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs. 展开更多
关键词 wetland plant rhizosphere nitrification intensity ammonia-oxidizing bacteria ammonia-oxidizing archaea florescence in situ hybridization
下载PDF
Linking bacterial and archaeal community dynamics to related hydrological,geochemical and environmental characteristics between surface water and groundwater in a karstic estuary
2
作者 Xiaogang Chen Qi Ye +5 位作者 Jinzhou Du Neven Cukrov Nuša Cukrov Yan Zhang Ling Li Jing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期158-170,共13页
Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play... Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management. 展开更多
关键词 submarine groundwater discharge surface water and groundwater interaction algal bloom microbial ecology nutrient biogeochemistry ammonia-oxidizing archaea nitrate-utilizing bacteria Krka River Estuary
下载PDF
农田土壤好氧氨氧化和甲烷氧化交互作用机制的研究进展 被引量:1
3
作者 潘红 李江叶 +4 位作者 冯浩杰 娄燕宏 杨全刚 王会 诸葛玉平 《西北农业学报》 CAS CSCD 北大核心 2024年第2期201-207,共7页
从农田土壤生态系统中硝化和甲烷氧化的研究意义、氨氧化和甲烷氧化的功能微生物演替规律,以及二者交互作用机制三个方面综述了现阶段取得的主要研究成果,并进一步阐述了土壤碳氮元素生物地球化学循环机制研究的科学问题和面临的挑战。... 从农田土壤生态系统中硝化和甲烷氧化的研究意义、氨氧化和甲烷氧化的功能微生物演替规律,以及二者交互作用机制三个方面综述了现阶段取得的主要研究成果,并进一步阐述了土壤碳氮元素生物地球化学循环机制研究的科学问题和面临的挑战。未来研究应充分利用学科交叉,结合宏观结果和土壤微观动态过程,揭示土壤中不可培养微生物代谢能力及其在土壤生物地球化学循环中的重要作用,逐步实现对土壤生态过程的预测和调控。 展开更多
关键词 氨氧化 甲烷氧化 交互作用 氨氧化细菌(AOB) 氨氧化古菌(aoa) 甲烷氧化菌(MOB)
下载PDF
Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates 被引量:4
4
作者 SONG Ya-na LIN Zhi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期870-880,共11页
Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to... Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years. 展开更多
关键词 ammonia-oxidizing bacteria ammonia-oxidizing archaea nitrogen fertilizer rates paddy soil
下载PDF
Shifts in community structure and function of ammoniaoxidizing archaea in biological soil crusts along a revegetation chronosequence in the Tengger Desert 被引量:1
5
作者 LiNa Zhao XinRong Li +1 位作者 ShiWei Yuan YuBing Liu 《Research in Cold and Arid Regions》 CSCD 2019年第2期139-149,共11页
Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea(AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure an... Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea(AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure and ammonia-oxidation capacity of AOA communities in biological soil crusts(BSCs) of desert ecosystems remain poorly understood.Here, we utilized Illumina MiSeq sequencing and microbial functional gene array(GeoChip 5.0) to assess the above changes along a 51-year revegetation chronosequence in the Tengger Desert, China. The results showed a significant difference in AOA-community richness between 5-year-old BSCs and older ones. The most dominant phylum during BSC development was Crenarchaeota, and the corresponding species were ammonia-oxidizing_Crenarchaeote and environmental_samples_Crenarchaeota. Network analysis revealed that the positive correlations among dominant taxa increased, and their cooperation was reinforced in AOA communities during BSC succession. Redundancy analysis showed that the dominant factor influencing the change in AOA-community structure was soil texture. GeoChip 5.0 indicated that the amoA gene abundances of AOA and ammonia-oxidizing bacteria(AOB) were basically the same, demonstrating that AOA and AOB played an equally important role during BSCs development. Our study of the long-term succession of BSC demonstrated a persistent response of AOA communities to revegetation development in desert ecosystems. 展开更多
关键词 ammonia-oxidizing archaea biological soil CRUSTS GeoChip 5.0 network analysis
下载PDF
Gene abundances of AOA,AOB,and anammox controlled by groundwater chemistry of the Pearl River Delta,China 被引量:3
6
作者 Kun Liu Xin Luo +2 位作者 Jiu Jimmy Jiao Ji-dong Gu Ramon Aravena 《China Geology》 2021年第3期463-475,共13页
Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of... Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of these microbes were believed to be well relevant to N-cycling in groundwater systems,especially in the Pearl River Delta(PRD)groundwater with unique high intrinsic ammonia concentrations.In this research,20 sediment samples from two in the PRD were collected for porewater chemistry analysis and quantification of N-cycling related genes,including archaeal and bacterial amoA gene and anammox 16S ribosomal Ribonucleic Acid(rRNA)gene.Quantitative Polymerase Chain Reaction(qPCR)results showed that gene abundances of AOA,AOB,and anammox bacteria ranged from 3.13×10^(5)to 3.21×10^(7),1.83×10^(4)to 2.74×10^(6),and 9.27×10^(4)to 8.96×10^(6)copies/g in the sediment of the groundwater system,respectively.Anammox bacteria and AOA dominated in aquitards and aquifers,respectively,meanwhile,the aquitard-aquifer interfaces were demonstrated as ammonium-oxidizing hotspots in the aspect of gene numbers.Gene abundances of nitrifiers were analyzed with geochemistry profiles.Correlations between gene numbers and environmental variables indicated that the gene abundances were impacted by hydrogeological conditions,and microbial-derived ammonium loss was dominated by AOA in the northwest PRD and by anammox bacteria in the southeast PRD. 展开更多
关键词 ANAMMOX Ammonium oxidizing archaea(aoa) Ammonium oxidation bacteria(AOB) AQUITARD Groundwater Hydrogeological survey engineering Pearl River Delta China
下载PDF
Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant 被引量:4
7
作者 Golam MIslam Peter Vi Kimberley Ann Gilbride 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第12期120-130,共11页
The abundance of ammonia-oxidizing bacteria and archaea and their amo A genes from the aerobic activated sludge tanks,recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant(WWTP)was determi... The abundance of ammonia-oxidizing bacteria and archaea and their amo A genes from the aerobic activated sludge tanks,recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant(WWTP)was determined.Polymerase chain reaction and denaturing gradient gel electrophoresis were used to generate diversity profiles,which showed that each population had a consistent profile although the abundance of individual members varied.In the aerobic tanks,the ammonia-oxidizing bacterial(AOB)population was more than 350 times more abundant than the ammonia-oxidizing archaeal(AOA)population,however in the digesters,the AOA population was more than 10 times more abundant.Measuring the activity of the amo A gene expression of the two populations using RT-PCR also showed that the AOA amo A gene was more active in the digesters than in the activated sludge tanks.Using batch reactors and dd PCR,amo A activity could be measured and it was found that when the AOB amo A activity was inhibited in the anoxic reactors,the expression of the AOA amo A gene increased fourfold.This suggests that these two populations may have a cooperative relationship for the oxidation of ammonia. 展开更多
关键词 Wastewater treatment Topic:ammonia-oxidation ammonia-oxidizing bacteria(AOB) ammonia-oxidizing archaea(aoa) PCR Digital droplet polymerase chain reaction(ddPCR)
原文传递
Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone 被引量:3
8
作者 Zhixin Li Wenbiao Jin +2 位作者 Zhaoyun Liang Yangyang Yue Junhong Lv 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1195-1205,共11页
Ammonia-oxidizing archaea (AOA) are widely considered key to ammonia oxidation in various environments. However, little work has been conducted to simultaneously investigate the abundance and diversity of AOA as wel... Ammonia-oxidizing archaea (AOA) are widely considered key to ammonia oxidation in various environments. However, little work has been conducted to simultaneously investigate the abundance and diversity of AOA as well as correlations between archaeal amoA genotypes and environmental parameters of different ecosystems at one district. To understand the abundance, diversity, and distribution of AOA in Pearl River Delta of China in response to various habitats, the archaeal amoA genes in soil, marine, river, lake, hot spring and wastewater treatment plant (WWTP) samples were investigated using real-time fluorescent quantitative PCR and clone libraries. Our analyses indicated that the diversity of AOA in various habitats was different and could be clustered into five major clades, i.e., estuary sediment, marine water/sediment, soil, hot spring and Cluster 1. Phylogenetic analyses revealed that the structure of AOA communities in similar ecological habitats exhibited strong relation. The canonical correspondence method indicated that the AOA community structure was strongly correlated to temperature, pH, total organic carbon, total nitrogen and dissolved oxygen variables. Assessing AOA amoA gene copy numbers, ranging from 6.84× 10^6 to 9.45 × 10^7 copies/g in dry soil/sediment, and 6.06× 10^6 to 2.41 ×10^7 copies/L in water samples, were higher than ammonia-oxidizing bacteria (AOB) by 1-2 orders of magnitude. However, AOA amoA copy numbers were much lower than AOB in WWTP activated sludge samples. Overall, these studies suggested that AOA may be a major contributor to ammonia oxidation in natural habitats but play a minor role in highly aerated activated sludge. The result also showed the ratio of AOA to AOB amoA gene abundance was positively correlated with temperature and less correlated with other environmental parameters. New data from our study provide increasing evidence for the relative abundance and diversity of ammonia-oxidizing archaea in the global nitrogen cycle. 展开更多
关键词 ammonia-oxidizing archaea ABUNDANCE community structure real-time quantitative PCR clone library Pearl River Delta
原文传递
Abundance and distribution of ammonia-oxidizing archaea in Tibetan and Yunnan plateau agricultural soils of China 被引量:2
9
作者 Kun DING Xianghua WEN Liang CHEN Daishi HUANG Fan FEI Yuyang LI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第5期693-702,共10页
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammo... As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance. 展开更多
关键词 ammonia-oxidizing archaea ammonia-oxidizing bacteria quantitative PCR clone library PLATEAU
原文传递
Active ammonia-oxidizing bacteria and archaea in wastewater treatment systems 被引量:2
10
作者 Maosheng Zheng Shishi He +4 位作者 Yueqi Feng Mingyuan Wang Yong-Xin Liu Chenyuan Dang Jiawen Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第4期273-282,共10页
Ammonia-oxidizing bacteria(AOB)and archaea(AOA)are two microbial groups mediating nitrification,yet little is presently known about their abundances and community structures at the transcriptional level in wastewater ... Ammonia-oxidizing bacteria(AOB)and archaea(AOA)are two microbial groups mediating nitrification,yet little is presently known about their abundances and community structures at the transcriptional level in wastewater treatment systems(WWTSs).This is a significant issue,as the numerical abundance of AOA or AOB at the gene level may not necessarily represent their functional role in ammonia oxidation.Using amo A genes as molecular markers,this study investigated the transcriptional abundance and community structure of active AOA and AOB in 14 WWTSs.Quantitative PCR results indicated that the transcriptional abundances of AOB amo A(averaged:1.6×10^(8)copies g^(-1)dry sludge)were higher than those of AOA(averaged:3.4×10^(7)copies g^(-1)dry sludge)in all WWTSs despite several higher abundances of AOA amo A at the gene level.Moreover,phylogenetic analysis demonstrated that Nitrosomonas europaea and unknown clusters accounted for 37.66%and 49.96%of the total AOB amo A transcripts,respectively,suggesting their dominant role in driving ammonia oxidation.Meanwhile,AOA amo A transcripts were only successfully retrieved from 3 samples,and the Nitrosospaera sister cluster dominated,accounting for 83.46%.Finally,the substrate utilization kinetics of different AOA and AOB species might play a fundamental role in shaping their niche differentiation,community composition,and functional activity.This study provides a basis for evaluating the relative contributions of ammonia-oxidizing microorganisms(AOMs)to nitrogen conversions in WWTSs. 展开更多
关键词 ammonia-oxidizing bacteria ammonia-oxidizing archaea Transcriptional activity Community structure Wastewater treatment system
原文传递
Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China 被引量:2
11
作者 Chunhong Chen Hong Liang Dawen Gao 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2019年第4期123-138,共16页
Since its first detection, ammonia-oxidizing archaea (AOA) have been proven to be ubiquitous in aquatic and terrestrial ecosystems. In this study, two freshwater marsh wetlands- the Honghe wetland and Qixinghe wetland... Since its first detection, ammonia-oxidizing archaea (AOA) have been proven to be ubiquitous in aquatic and terrestrial ecosystems. In this study, two freshwater marsh wetlands- the Honghe wetland and Qixinghe wetland - in the black soil zone in North-east China were chosen to investigate the AOA community diversity and distribution in wetland soils with different vegetation and depth. In the Honghe wetland, two sampling locations were chosen as the dominant plant transited from Deyeuxia to Carex. In the Qixinghe wetland, one sample location that was dominated by Deyeuxia was chosen. Samples of each location were collected from three different depths, and Illumina MiSeq platform was used to generate the AOA amoA gene archive. The results showed that the AOA amoA genes in the soils of the two wetlands were affiliated with three lineages: Nitrososphaera, Nitrosotalea, and Nitrosopumilus clusters. The different dominant status of these AOA lineages indicated their differences in adapting to acidic habitat, oxygenic/hypoxic alternation, organic matter, and other environmental factors, suggesting high diversity among AOA in marsh soils. The main driver of the AOA community was pH, along with organic carbon and ammonium nitrogen, which also played an important role combined with many other environmental factors. Thus, soil physiochemical characteristics, rather than vegetation, were the main cause of AOA community diversity in the wetlands in the black soil zone in China. 展开更多
关键词 ammonia-oxidizing archaea AMOA gene Freshwater MARSH Diversity DISTRIBUTION
原文传递
Nitrogen transformation processes in soil along a High Arctic tundra transect
12
作者 GUO Mengjie WANG Qing +4 位作者 ZHANG Wanying JIAO Yi SUN Bowen HOU Lijun ZHU Renbin 《Advances in Polar Science》 CSCD 2023年第2期105-124,共20页
Soil nitrogen(N)transformation processes in the High Arctic tundra are poorly understood even though nitrogen is one of the main limiting nutrients.We analyzed soil samples collected along a High Arctic tundra transec... Soil nitrogen(N)transformation processes in the High Arctic tundra are poorly understood even though nitrogen is one of the main limiting nutrients.We analyzed soil samples collected along a High Arctic tundra transect to investigate spatial variability in key nitrogen transformation processes,functional gene abundances,ammonia-oxidizing archaea(AOA)community structures,and key nitrogen transformation regulators.The potential denitrification rates were higher than the nitrification rates in the soil samples,although nitrification may still regulate N2O emissions from tundra soil.The nutrient(total carbon,total organic carbon,total nitrogen,and NH_(4)^(+)-N)contents were important determinants of spatial variability in the potential denitrification rates of soil along the tundra transect.The total sulfurcontent was the main variable controlling potential nitrification processes,probably in association with sulfate-reducing bacteria.The nitrate content was the main variable affecting potential dissimilatory nitrate reduction to ammonium.AOA and ammonia-oxidizing bacteria amoA,nirS,and anammox 16S rRNA genes were found in all of the soil samples.AOA play more important roles than ammonia-oxidizing bacteria in soilnitrification.Anammox bacteria may utilize NO_(2)^(-)produced through nitrification.Phylogenetic analysis indicated that the AOA amoA sequences could be grouped into eight unique operational taxonomic units(OTUs)with a 97%sequence similarity and were affiliated with three group 1.1b Nitrososphaeraclusters.The results indicated that heterogeneous environmental factors(e.g.,the carbon and nitrogen contents of soil)along the High Arctic tundra transect strongly affected the nitrogen transformation rate and relevant functional gene abundances in soil. 展开更多
关键词 Arctic tundra soil nitrogen transformation NITRIFICATION DENITRIFICATION functional gene abundance ammonia-oxidizing archaea
下载PDF
Response of ammonia-oxidizing archaea to heavy metal contamination in freshwater sediment 被引量:1
13
作者 Ningning Li Yao Chen +6 位作者 Zhengke Zhang Sha Chang Dawei Huang Sili Chen Qingwei Guo Shuguang Xie Yongxin Bing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第3期392-399,共8页
It has been well-documented that the distribution of ammonia-oxidizing bacteria(AOB) and archaea(AOA) in soils can be affected by heavy metal contamination, whereas information about the impact of heavy metal on these... It has been well-documented that the distribution of ammonia-oxidizing bacteria(AOB) and archaea(AOA) in soils can be affected by heavy metal contamination, whereas information about the impact of heavy metal on these ammonia-oxidizing microorganisms in freshwater sediment is still lacking. The present study explored the change of sediment ammonia-oxidizing microorganisms in a freshwater reservoir after being accidentally contaminated by industrial discharge containing high levels of metals. Bacterial amoA gene was found to be below the quantitative PCR detection and was not successfully amplified by conventional PCR. The number of archaeal amoA gene in reservoir sediments were 9.62 × 10~2–1.35 × 10~7 copies per gram dry sediment. AOA abundance continuously decreased, and AOA richness, diversity and community structure also considerably varied with time. Therefore, heavy metal pollution could have a profound impact on freshwater sediment AOA community. This work could expand our knowledge of the effect of heavy metal contamination on nitrification in natural ecosystems. 展开更多
关键词 ammonia-oxidizing archaea FRESHWATER SEDIMENT HEAVY metal Nitrosopumilus
原文传递
夏季珠江口冲淡水对氨氧化古菌的空间演替及分布规律的影响
14
作者 荆红梅 周鹏 +2 位作者 张玥 刘皓 刘红斌 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期22-31,共10页
氮在海洋生物地球化学循环中起着重要的作用,通常能限制海洋生物的生产力.硝化反应是氮循环的核心环节,且氨氧化反应是硝化作用的限速步骤,再加上氨氧化古菌(Ammonia Oxidizing Archaea,AOA)是氨氧化反应的主力军,因此海洋氨氧化古菌成... 氮在海洋生物地球化学循环中起着重要的作用,通常能限制海洋生物的生产力.硝化反应是氮循环的核心环节,且氨氧化反应是硝化作用的限速步骤,再加上氨氧化古菌(Ammonia Oxidizing Archaea,AOA)是氨氧化反应的主力军,因此海洋氨氧化古菌成了研究热点.通过对夏季珠江口的不同深度水体进行研究,以氨氧化古菌的功能基因氨单加氧酶(amoA)作为分子标记,运用454高通量测序技术和定量PCR在DNA和cDNA水平上来分析氨氧化古菌的群落结构组成、多样性和基因丰度分布特征.结果表明,夏季珠江口的淡水来源站位(A2B)有着最高的氨氧化古菌群落多样性,但丰度最低;自由生活型的氨氧化古菌丰度是附着生活型的10~1000倍,这可能是氨氧化古菌的主要生存策略;盐度是影响夏季珠江口氨氧化古菌群落结构组成的主要环境因子,而其amoA基因丰度与环境因子之间没有显著性差异;表层和底层AOA群落之间的差异较自由生活的与附着的群落之间更为明显.研究表明在cDNA水平上对功能微生物类群进行探究的必要性,有助于增进水体氨氧化古菌群落响应环境变迁的认识. 展开更多
关键词 氨氧化古菌 AMOA基因 珠江口 16S rRNA
下载PDF
铁矿区内重金属对土壤氨氧化微生物群落组成的影响 被引量:16
15
作者 洪晨 邢奕 +1 位作者 司艳晓 李洋 《中国环境科学》 EI CAS CSCD 北大核心 2014年第5期1212-1221,共10页
以密云水库上游某铁矿区为研究对象,采用荧光定量PCR和变性梯度凝胶电泳(DGGE)分析了矿区内不同采样点的土壤中氨氧化微生物的数量和群落结构的变化,结果表明,土样中氨氧化细菌(AOB)和氨氧化古菌(AOA)的数量变化范围分别为3.01... 以密云水库上游某铁矿区为研究对象,采用荧光定量PCR和变性梯度凝胶电泳(DGGE)分析了矿区内不同采样点的土壤中氨氧化微生物的数量和群落结构的变化,结果表明,土样中氨氧化细菌(AOB)和氨氧化古菌(AOA)的数量变化范围分别为3.01×107~1.08×109copies/g干土和8.65×107~2.69×109copies/g 干土.重金属含量与氨氧化微生物数量的相关性分析以及氨氧化微生物群落结构的冗余分析结果表明,该矿区内重金属污染改变了土壤中的氨氧化微生物的数量和结构.Cu污染对AOA的数量起到了显著抑制作用(r=-0.653*, P〈0.05),但是对AOB则没有明显作用;Zn污染对尾矿库区域土壤的AOA/AOB比值影响显著(r=-0.606*, P〈0.05);Cd污染改变了AOB的种群分布,降低了AOB 的多样性水平.土壤中 Cr 长期干扰并没有改变氨氧化微生物的数量和结构,但是明显得抑制了氨氧化速率,表明重金属污染在一定程度上也影响了土壤生态系统的氮循环. 展开更多
关键词 铁矿区 氨氧化古菌(aoa) 氨氧化细菌(AOB) archaea (aoa) ammonia-oxidizing bacteria (AOB)
下载PDF
长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响 被引量:32
16
作者 张苗苗 王伯仁 +2 位作者 李冬初 贺纪正 张丽梅 《生态学报》 CAS CSCD 北大核心 2015年第19期6362-6370,共9页
以长期施加氮肥及添加氧化钙调节的酸性土壤为研究对象,运用定量PCR和DGGE技术,探讨了土壤氨氧化微生物及硝化作用对不同施肥处理及氧化钙调节的响应。长期施化学氮肥导致酸性土壤p H(KCl)值(3.35—3.47)和硝化潜势(0.02—0.14μg NO-2-... 以长期施加氮肥及添加氧化钙调节的酸性土壤为研究对象,运用定量PCR和DGGE技术,探讨了土壤氨氧化微生物及硝化作用对不同施肥处理及氧化钙调节的响应。长期施化学氮肥导致酸性土壤p H(KCl)值(3.35—3.47)和硝化潜势(0.02—0.14μg NO-2-N g-1土壤h-1)进一步降低,而添加Ca O后土壤酸化得以缓解(p H值4.10—4.46),土壤硝化潜势(0.22—0.34μg NO-2-N g-1土h-1)显著增加。同时,添加Ca O处理对氨氧化古菌(AOA)的群落结构无明显影响,但明显提高了各施肥处理土壤中氨氧化细菌(AOB)的群落多样性,加Ca O处理的土壤中,AOA的数量降低而AOB的数量增加。这些结果表明虽然酸性土壤中AOA在数量和活性上占主导优势,AOB在功能上冗余,但当添加Ca O后,AOA和AOB对环境变化迅速作出响应,并根据其不同的生态位需求重新分配优势地位,二者交替作用共同驱动酸性土壤硝化作用。 展开更多
关键词 酸性土壤 氧化钙调节 硝化作用 氨氧化古菌(aoa) 氨氧化细菌(AOB)
下载PDF
脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响 被引量:21
17
作者 张文学 王少先 +4 位作者 夏文建 孙刚 刘增兵 李祖章 刘光荣 《植物营养与肥料学报》 CAS CSCD 北大核心 2019年第6期897-909,共13页
[目的]在农业生产中,脲酶抑制剂(urease inhibitor,UI)与硝化抑制剂(nitrification inhibitor,NI)常作为氮肥增效剂来提高肥料利用率。本文研究了在我国南方红壤稻田施用脲酶抑制剂与硝化抑制剂后,土壤中氨氧化细菌(ammonia oxidizing b... [目的]在农业生产中,脲酶抑制剂(urease inhibitor,UI)与硝化抑制剂(nitrification inhibitor,NI)常作为氮肥增效剂来提高肥料利用率。本文研究了在我国南方红壤稻田施用脲酶抑制剂与硝化抑制剂后,土壤中氨氧化细菌(ammonia oxidizing bacteria,AOB)、氨氧化古菌(ammonia-oxidizing archaea,AOA)以及反硝化细菌的丰度以及群落结构的变化特征,旨在揭示抑制剂的作用机理及其对土壤环境的影响。[方法]试验在我国南方红壤稻田进行,共设5个处理:1)不施氮肥(CK);2)尿素(U);3)尿素+脲酶抑制剂(U+UI);4)尿素+硝化抑制剂(U+NI);5)尿素+脲酶抑制剂+硝化抑制剂(U+UI+NI),3次重复。脲酶抑制剂与硝化抑制剂分别为NBPT[N-(n-butyl)thiophosphrictriamide,N-丁基硫代磷酰三胺]和DMPP(3,4-dimethylpyrazole phosphate,3,4-二甲基吡唑磷酸盐)。通过荧光定量PCR(Real-time PCR)研究水稻分蘖期与孕穗期抑制剂对三类微生物标记基因拷贝数的影响,并分析土壤铵态氮、硝态氮与三种菌群丰度的相关性;利用变性梯度凝胶电泳(DenaturingGradient Gel Electrophoresis,DGGE)分析抑制剂对土壤AOB、AOA以及反硝化细菌群落结构的影响,并对优势菌群进行系统发育分析。[结果]1)荧光定量PCR结果表明,施用氮肥对两个时期土壤中AOB的amoA基因与反硝化细菌nirK基因的拷贝数均有显著提高,而对AOA的amoA基因始终没有明显影响;AOB与nirK反硝化细菌的丰度与两个时期的铵态氮含量、分蘖期的硝态氮含量呈极显著正相关,与孕穗期的硝态氮含量相关性不显著;DMPP仅在分蘖期显著减少了AOB的amoA基因拷贝数,表明DMPP主要通过限制AOB的生长来抑制稻田土壤硝化过程;NBPT对三类微生物的丰度无明显影响;2)DGGE图谱表明,在分蘖期与孕穗期,施用氮肥均明显增加了图谱中AOB的条带数,而对AOA却没有明显影响;氮肥明显增加了孕穗期反硝化细菌的条带数;与氮肥的影响相比,抑制剂NBPT与DMPP对AOA、AOB以及反硝化菌的群落结构影响甚微;系统发育分析结果表明,与土壤中AOB的优势菌群序列较为接近的有亚硝化单胞菌和亚硝化螺菌。[结论]在南方红壤稻田中,施入氮肥可显著提高AOB与反硝化细菌的丰度,明显影响两种菌群的群落结构,而AOA较为稳定;NBPT对三类微生物的群落结构丰度无明显影响;硝化抑制剂DMPP可抑制AOB的生长但仅表现在分蘖期,这可能是其缓解硝化反应的主要途径;这也说明二者对土壤生态环境均安全可靠。 展开更多
关键词 抑制剂 稻田 氨氧化细菌 氨氧化古菌 反硝化细菌
下载PDF
异养硝化、厌氧氨氧化及古菌氨氧化与新的氮循环 被引量:30
18
作者 郭建华 彭永臻 《环境科学学报》 CAS CSCD 北大核心 2008年第8期1489-1498,共10页
自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,... 自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,旨在为今后人们重新认识和构建新的氮循环提供有用信息,并对这些新型微生物今后在污水生物脱氮处理中的应用提出了一些展望和设想.指出今后在污水生物处理系统中,可通过富集异养硝化菌强化同步硝化反硝化、富集厌氧氨氧化菌实现单级自养脱氮、富集氨氧化古菌提高低溶解氧下的脱氮效率. 展开更多
关键词 厌氧氨氧化 氨氧化细菌 古细菌 氨氧化古菌 异养硝化 氮循环
下载PDF
施氮肥对华北平原土壤氨氧化细菌和古菌数量及群落结构的影响 被引量:33
19
作者 杨亚东 张明才 +3 位作者 胡君蔚 张凯 胡跃高 曾昭海 《生态学报》 CAS CSCD 北大核心 2017年第11期3636-3646,共11页
利用荧光定量PCR、末端限制性片段长度多样性(T-RFLP)和基因克隆文库技术,比较了4种施氮水平(不施氮肥,0 kg N/hm^2,CK;施低水平氮肥,75 kg N/hm^2,N1;施中水平氮肥,150 kg N/hm^2,N2;施高水平氮肥,225 kg N/hm^2,N3)下华北平原地区小... 利用荧光定量PCR、末端限制性片段长度多样性(T-RFLP)和基因克隆文库技术,比较了4种施氮水平(不施氮肥,0 kg N/hm^2,CK;施低水平氮肥,75 kg N/hm^2,N1;施中水平氮肥,150 kg N/hm^2,N2;施高水平氮肥,225 kg N/hm^2,N3)下华北平原地区小麦季表层(0—20 cm)土壤总细菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的丰度和群落结构。结果表明,土壤总细菌、AOB和AOA数量分别在每克干土5.74×10~9—7.50×10~9、8.89×10~6—2.66×10~7和3.83×10~8—7.78×10~8之间。不同施氮量土壤AOA数量均高于AOB数量,AOA/AOB值在81.72—14.38之间。增施氮肥显著显著提高AOB数量(P<0.05),对总细菌和AOA数量的影响不显著(P>0.05)。与CK相比,处理N1、N2和N3中AOB数量分别提高了0.64、1.50和1.99倍。增施氮肥显著改变了AOB和AOA的群落结构,且不同施氮量处理中AOB群落结构差异更大。系统进化分析显示,施氮肥小麦土壤AOB主要为Nitrosospira属类群,分布在Cluster 3的两个分支中;AOA分布在Cluster S的4个分支中。相关性分析显示,AOB数量与全氮和铵态氮含量呈显著正相关关系,与土壤pH和碳氮比呈显著负相关关系(P<0.05);AOA数量与硝态氮含量和土壤pH呈显著正相关关系,与铵态氮含量呈显著负相关关系(P<0.05)。研究结果表明:增施氮肥可显著改变华北平原地区碱性土壤AOB数量与群落结构,该地区小麦土壤中AOB比AOA对氮肥响应更敏感。 展开更多
关键词 氮肥 氨氧化细菌 氨氧化古菌 丰度 群落结构 末端限制性片段长度多样性
下载PDF
硝化抑制剂对毛竹林土壤N2O排放和氨氧化微生物的影响 被引量:22
20
作者 毛新伟 程敏 +4 位作者 徐秋芳 陈俊辉 赵天心 余晓 李永春 《土壤学报》 CAS CSCD 北大核心 2016年第6期1528-1540,共13页
为了探索硝化抑制剂在毛竹生产中的施用技术,通过培养试验研究3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)两种硝化抑制剂对毛竹林施用尿素后土壤N2O排放、氮素转化和相关氨氧化细菌(AOB)、氨氧化古菌(AOA)群落结构和丰度的影响。试验设(1... 为了探索硝化抑制剂在毛竹生产中的施用技术,通过培养试验研究3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)两种硝化抑制剂对毛竹林施用尿素后土壤N2O排放、氮素转化和相关氨氧化细菌(AOB)、氨氧化古菌(AOA)群落结构和丰度的影响。试验设(1)对照(CK)、(2)单施尿素(Urea)、(3)尿素+1%DMPP(DMPP占总N的1%,下同);(4)尿素+1.5%DMPP;(5)尿素+10%DCD;(6)尿素+15%DCD等6个处理,测定N2O的排放动态以及气体排放转折点时的土壤特征指标。结果表明:与单施尿素相比,160 d的时间内两种DMPP用量处理的土壤N2O累积排放减排幅度均为54%,而10%DCD和15%DCD处理的土壤分别减少28%和41%。DMPP和DCD处理50 d和90 d时土壤的NH4+-N含量均显著高于(p<0.05)单施尿素处理,而NO3--N含量和表观硝化率则恰好相反,但两种抑制剂间无差异。DMPP处理的AOB群落结构的变化从10 d开始显现,至50 d和90 d时仍保持明显的抑制状态,而DCD处理则至90 d时抑制作用基本消失。单施尿素AOB功能基因(amo A)的丰度均显著高于硝化抑制剂处理(90 d时尿素+10%DCD处理除外);在整个培养期内,尿素和对照土壤的AOA群落结构相似,硝化抑制剂反而增加了AOA功能基因的丰度,表明硝化抑制剂对AOA丰度无明显抑制作用。即两种硝化抑制剂主要通过抑制AOB起作用;调节土壤p H至中性范围,并在1%DMPP施用条件下,硝化抑制剂的抑制效果最显著。 展开更多
关键词 N2O:3 4-甲基吡唑磷酸盐 双氰胺 毛竹林 氨氧化细菌 氨氧化古菌
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部