期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
1
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils 被引量:7
2
作者 LI Xinyu ZHANG Huiwen +2 位作者 WU Minna SU Zhencheng ZHANG Chenggang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1126-1131,共6页
Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and ... Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised ... 展开更多
关键词 ammonia-oxidizing bacteria (aob PCR-DGGE ACETOCHLOR
下载PDF
Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using fluorescent in situ hybridization(FISH) 被引量:1
3
作者 YAN Li Ryuhei Inamori +4 位作者 GUI Ping XU Kai-qin KONG Hai-nan Masatoshi Matsurnura Yuhei Inamori 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期993-997,共5页
A molecular biology method, fluorescent in situ hybridization(FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands(CW), e.g. the soil and the grit, was used to invest... A molecular biology method, fluorescent in situ hybridization(FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands(CW), e.g. the soil and the grit, was used to investigate the vertical distribution characteristics of ammonia-oxidizing bacteria(AOB) quantity and the relation with oxidation-reduction potential(ORP) in the Typha latifolia constructed wetlands under three different Ioadings in summer from May to September. Results showed that the quantity of the AOB decreased in the Typha latifolia CW with the increase of vertical depth. However, the AOB quantity was 2-4 times the quantity of the control in the root area. Additionally, ORP in the rhizosphere was found to be higher than other areas, which showed that Typha latifolia CW was in an aerobic state in summer when using simulated non-point sewage at the rural area of Taihu Lake in China and small town combined sewage. 展开更多
关键词 constructed wetland(CW) fluorescent in situ hybridization(FISH) ammonia-oxidizing bacteria (aob Typha/atifo/ia(cattail)
下载PDF
Effects of Transgenic DREB Soybean Dongnong 50 on the Diversity of Soil Ammonia-oxidizing Bacteria
4
作者 金羽 曲娟娟 +1 位作者 任广明 董蕾 《Agricultural Science & Technology》 CAS 2013年第7期988-992,997,共6页
ObjectiveThe aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria. MethodThe diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybe... ObjectiveThe aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria. MethodThe diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybean under normal water condition and drought stress was analyzed by PCR-DGGE and sequence analysis. ResultRhizosphere community diversity of ammonia-oxidizing bacteria showed no difference between the treatments of transgenic soybean and its non-transgenic isolines, moreover transgenic soybean under normal water condition and drought stress improved the diversity of the ammonia-oxidizing bacteria in the harvest time. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosovibrio and Nitrosospira of the β-subclass Proteobacteria. ConclusionTransgenic DREB soybean has no adverse impact on soil ammonia-oxidizing bacteria. 展开更多
关键词 Transgenic soybean DREB ammonia-oxidizing bacteria DIVERSITY
下载PDF
Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems 被引量:17
5
作者 Xiaohui Wang Xianghua Wen +3 位作者 Craig Criddle George Wells Jie Zhang Yin Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期627-634,共8页
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag... We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems. 展开更多
关键词 activated sludge ammonia-oxidizing bacteria T-RFLP amoA gene wastewater treatment plant
下载PDF
Distribution of ammonia-oxidizing Betaproteobacteria community in surface sediment off the Changjiang River Estuary in summer 被引量:6
6
作者 LI Jialin BAI Jie +1 位作者 GAO Huiwang LIU Guangxing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第3期92-99,共8页
The spatial distribution of ammonia-oxidizing Betaproteobacteria (βAOB) was investigated by FISH (fluorescence in situ hybridization) and DGGE (denaturing gradient get electrophoresis) techniques in the sedimen... The spatial distribution of ammonia-oxidizing Betaproteobacteria (βAOB) was investigated by FISH (fluorescence in situ hybridization) and DGGE (denaturing gradient get electrophoresis) techniques in the sediment off the Changjiang River Estuary. Sediment samples were collected from eight stations in June before the formation of hypoxia zone in 2006. The abundance of βAOB ranged from 1.87× 10^5 to 3.53×10^5 cells/g of sediment. βAOB abundance did not present a negative correlation with salinity, whereas salinity was implicated as the primary factor affecting nitrification rates. The DGGE profiles of PCR-amplified amoA gene fragments revealed that the βAOB community structure of sample S2 separated from other samples at the level of 40% similarity. The variations in composition ofβAOB were significantly correlated with the salinity, temperature, absorption ability of sediments and TOC. The statistical analysis indicates that theβAOB abundance was a main factor to influence nitrification rates with an influence ratio of 87.7% at the level of 40% biodiversity similarity. Considering the good correlation between βAOB abundance and nitrification estimates, the abundance and diversity of βAOB community could be expected as an indirect index of nitrification activity at the study sea area in summer. 展开更多
关键词 ammonia-oxidizing Betaproteobacteria (βaob) diversity abundance NITRIFICATION surface sediment Changiiang River Estuarv (CRE)
下载PDF
Characterization of Bacterial Community,Ammonia-Oxidizing Bacteria,and Nitrospira During the Operation of a Commercial-Scale Recirculating Aquaculture System for Culturing Pufferfish Takifugu rubripes 被引量:1
7
作者 MA Yuexin YU Zichao +3 位作者 DU Xin ZHANG Tao WANG Ning TAO Wei 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1399-1408,共10页
We investigated the changes in communities of bacteria,ammonia-oxidizing bacteria,and Nitrospira during the operation of a pufferfish Takifugu rubripes recirculating aquaculture system by using high-throughput DNA seq... We investigated the changes in communities of bacteria,ammonia-oxidizing bacteria,and Nitrospira during the operation of a pufferfish Takifugu rubripes recirculating aquaculture system by using high-throughput DNA sequencing.Differences in bacterial communities were observed at days 1-32,47-62 and 78-93 of biofilm development by using 16S rRNA gene pyrosequencing.The relative abundance of Proteobacteria(Gammaproteobacteria)increased,while that of Bacteroidetes(Flavobacteria)decreased.The proportions of Nitrosomonas and Nitrospina ranged from 0.02%to 0.30%and from 0.02%to 0.83%,respectively.Ammonia monooxygenase gene pyrosequencing revealed that the top three operational taxonomic units were related to Nitrosomonas aestuarii(17.5%-61.1%),uncultured beta proteobacterium clone B67S-54(1.9%-45.2%),and uncultured bacterium clone AZPa8(3.6%-24.7%).Nitrite oxidoreductase gene pyrosequencing revealed that the relative abundance of the dominant strain Nitrospira sp.Ecomares 2.1 increased,but that of the abundant species Nitrospira marina decreased.Our results demonstrated that the communities of bacteria,ammonia-oxidizing bacteria,and Nitrospira were changing during the operation of the pufferfish recirculating aquaculture system. 展开更多
关键词 BIOFILTER bacterial community ammonia-oxidizing bacteria NITROSPIRA recirculating aquaculture system
下载PDF
Nitrification intensity and ammonia-oxidizing bacteria and archaea in different wetland plant rhizosphere soils 被引量:1
8
作者 Yan Chunni Huang Juan +3 位作者 Yang Sisi Cao Chong Peng Cheng Li Runqing 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期466-472,共7页
In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Ac... In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs. 展开更多
关键词 wetland plant rhizosphere nitrification intensity ammonia-oxidizing bacteria ammonia-oxidizing archaea florescence in situ hybridization
下载PDF
Variation of Potential Nitrification and Ammonia-Oxidizing Bacterial Community with Plant-Growing Period in Apple Orchard Soil
9
作者 LIU Ling-zhi QIN Si-jun +2 位作者 Lü De-guo WANG Bing-ying YANG Ze-yuan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第2期415-425,共11页
In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of env... In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4+-N content, NO3-N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the 13-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NHa+-N and NO3--N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics. 展开更多
关键词 apple orchard soil ammonia-oxidizing bacteria potential nitrification community structure PCR-dena~'ing gradientgel electrophoresis
下载PDF
Linking bacterial and archaeal community dynamics to related hydrological,geochemical and environmental characteristics between surface water and groundwater in a karstic estuary
10
作者 Xiaogang Chen Qi Ye +5 位作者 Jinzhou Du Neven Cukrov Nuša Cukrov Yan Zhang Ling Li Jing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期158-170,共13页
Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play... Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management. 展开更多
关键词 submarine groundwater discharge surface water and groundwater interaction algal bloom microbial ecology nutrient biogeochemistry ammonia-oxidizing archaea nitrate-utilizing bacteria Krka River Estuary
下载PDF
农田土壤好氧氨氧化和甲烷氧化交互作用机制的研究进展 被引量:1
11
作者 潘红 李江叶 +4 位作者 冯浩杰 娄燕宏 杨全刚 王会 诸葛玉平 《西北农业学报》 CAS CSCD 北大核心 2024年第2期201-207,共7页
从农田土壤生态系统中硝化和甲烷氧化的研究意义、氨氧化和甲烷氧化的功能微生物演替规律,以及二者交互作用机制三个方面综述了现阶段取得的主要研究成果,并进一步阐述了土壤碳氮元素生物地球化学循环机制研究的科学问题和面临的挑战。... 从农田土壤生态系统中硝化和甲烷氧化的研究意义、氨氧化和甲烷氧化的功能微生物演替规律,以及二者交互作用机制三个方面综述了现阶段取得的主要研究成果,并进一步阐述了土壤碳氮元素生物地球化学循环机制研究的科学问题和面临的挑战。未来研究应充分利用学科交叉,结合宏观结果和土壤微观动态过程,揭示土壤中不可培养微生物代谢能力及其在土壤生物地球化学循环中的重要作用,逐步实现对土壤生态过程的预测和调控。 展开更多
关键词 氨氧化 甲烷氧化 交互作用 氨氧化细菌(aob) 氨氧化古菌(AOA) 甲烷氧化菌(MOB)
下载PDF
利用RFLP分析DO对附积床系统中AOB群落结构的影响 被引量:4
12
作者 张岩 朱敏 +5 位作者 刘焕光 孙凤侠 甘志明 陈敬 史杨 谢杭冀 《中国环境科学》 EI CAS CSCD 北大核心 2014年第9期2387-2393,共7页
为了解析DO浓度对附积床反应器脱氮系统中COD、NH^4+-N、TN去除效率的影响,以及对氨氧化菌群(AOB)结构及多样性的影响,分析了DO分别为1.0~2.0,2.0~3.0,3.0~4.0mg/L时COD、NH^4+-N、TN去除效率,并采用针对AOB功能基因氨单加氧酶(... 为了解析DO浓度对附积床反应器脱氮系统中COD、NH^4+-N、TN去除效率的影响,以及对氨氧化菌群(AOB)结构及多样性的影响,分析了DO分别为1.0~2.0,2.0~3.0,3.0~4.0mg/L时COD、NH^4+-N、TN去除效率,并采用针对AOB功能基因氨单加氧酶(amoA)的限制性内切酶片段长度多态性技术(RFLP)分析了三组DO浓度下反应器中AOB的群落结构及多样性.结果表明,不同DO条件下,系统均取得较高的COD和NH^4+-N的去除效果, NH^4+-N的去除效率随着DO的增加而提高.不同DO浓度下反应器生物膜上AOB菌群多样性丰富,且与DO对AOB菌群的多样性影响较小相比,DO对AOB的菌群结构及种类的影响较大. 展开更多
关键词 氨氧化细菌(aob) AMOA基因 RFLP 生物膜
下载PDF
MUCT脱氮除磷系统中聚磷菌(Candidatus Accumulibacter)和氨氧化细菌(AOB)的菌群结构及组成特征
13
作者 张丽敏 曾薇 +1 位作者 李博晓 王向东 《安全与环境学报》 CAS CSCD 北大核心 2016年第6期241-247,共7页
采用MUCT(Modified University of Cape Town)工艺处理低C/N实际生活污水,通过控制溶解氧和缩短水力停留时间(HRT)等手段实现短程硝化,并在短程硝化的基础上取得了良好的反硝化除磷效果。分别采用功能基因ppk1和amo A作为遗传标记对MUC... 采用MUCT(Modified University of Cape Town)工艺处理低C/N实际生活污水,通过控制溶解氧和缩短水力停留时间(HRT)等手段实现短程硝化,并在短程硝化的基础上取得了良好的反硝化除磷效果。分别采用功能基因ppk1和amo A作为遗传标记对MUCT工艺短程阶段的聚磷菌(Candidatus Accumulibacter)和氨氧化细菌(AOB)的菌群结构进行了研究。ppk1功能基因系统发育分析结果表明,MUCT工艺中Candidatus Accumulibacter分支具有多样化,共包含IID、IIC、IIF 3个进化枝。Candidatus Accumulibacter以TypeⅡ型为主,其中分支Acc-IID占克隆文库的94.3%,是Candidatus Accumulibacter中的优势菌属。证实了在以亚硝酸盐为电子受体的条件下,Acc-IID为除磷的主要承担者。分支Acc-IIF的出现可能与反应系统保持较高温度有关。amo A基因的系统发育分析结果表明,所有AOB序列属于Nitrosomonas europaea lineage。通过低溶解氧和短HRT建立的短程是N.europaea lineage成为AOB中优势菌属的重要原因。研究表明,短程反硝化条件下MUCT反应器中的优势Candidatus Accumulibacter和AOB分别为IID和N.europaea lineage,其丰度和菌群结构是影响污水生物除磷和硝化效果的主要因素。 展开更多
关键词 环境工程学 MUCT ppk1 AMOA 氨氧化细菌(aob) Candidatus Accumulibacter
下载PDF
AOB去除炔雌醇的共代谢与硝基化协同作用 被引量:2
14
作者 王丽丽 姜晓满 李安婕 《中国环境科学》 EI CAS CSCD 北大核心 2020年第12期5246-5252,共7页
采用氨氧化菌Nitrosomonas europaea降解17α-乙炔雌二醇(EE2),考察降解过程中氨氮的作用以及EE2的降解机制.结果表明,N.europaea降解EE2属于共代谢过程,氨氮是共代谢发生的必要条件.氨氧化过程产生的亚硝氮会在酸性条件下将EE2硝基化,... 采用氨氧化菌Nitrosomonas europaea降解17α-乙炔雌二醇(EE2),考察降解过程中氨氮的作用以及EE2的降解机制.结果表明,N.europaea降解EE2属于共代谢过程,氨氮是共代谢发生的必要条件.氨氧化过程产生的亚硝氮会在酸性条件下将EE2硝基化,反应符合一级动力学模型,降解速率常数与亚硝酸根、H^+及游离亚硝酸浓度成正相关.通过控制pH值大于7.5抑制硝基化反应,证实了N.europaea对EE2的生物降解作用,生物降解反应符合一级动力学模型且降解速率常数为0.0069h^-1.当N.europaea氨氧化反应导致pH值低于7.5时,EE2的去除存在生物降解和硝基化的协同作用,EE2去除符合一级动力学模型且降解速率常数为0.0093h^-1.同时还发现一种未曾报道过的EE2生物降解产物M613,对于其雌激素效应和毒性还需进一步探究. 展开更多
关键词 氨氧化细菌 17α-乙炔雌二醇(EE2) 共代谢 硝基化
下载PDF
Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates 被引量:4
15
作者 SONG Ya-na LIN Zhi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期870-880,共11页
Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to... Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years. 展开更多
关键词 ammonia-oxidizing bacteria ammonia-oxidizing archaea nitrogen fertilizer rates paddy soil
下载PDF
Gene abundances of AOA,AOB,and anammox controlled by groundwater chemistry of the Pearl River Delta,China 被引量:3
16
作者 Kun Liu Xin Luo +2 位作者 Jiu Jimmy Jiao Ji-dong Gu Ramon Aravena 《China Geology》 2021年第3期463-475,共13页
Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of... Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of these microbes were believed to be well relevant to N-cycling in groundwater systems,especially in the Pearl River Delta(PRD)groundwater with unique high intrinsic ammonia concentrations.In this research,20 sediment samples from two in the PRD were collected for porewater chemistry analysis and quantification of N-cycling related genes,including archaeal and bacterial amoA gene and anammox 16S ribosomal Ribonucleic Acid(rRNA)gene.Quantitative Polymerase Chain Reaction(qPCR)results showed that gene abundances of AOA,AOB,and anammox bacteria ranged from 3.13×10^(5)to 3.21×10^(7),1.83×10^(4)to 2.74×10^(6),and 9.27×10^(4)to 8.96×10^(6)copies/g in the sediment of the groundwater system,respectively.Anammox bacteria and AOA dominated in aquitards and aquifers,respectively,meanwhile,the aquitard-aquifer interfaces were demonstrated as ammonium-oxidizing hotspots in the aspect of gene numbers.Gene abundances of nitrifiers were analyzed with geochemistry profiles.Correlations between gene numbers and environmental variables indicated that the gene abundances were impacted by hydrogeological conditions,and microbial-derived ammonium loss was dominated by AOA in the northwest PRD and by anammox bacteria in the southeast PRD. 展开更多
关键词 ANAMMOX Ammonium oxidizing archaea(AOA) Ammonium oxidation bacteria(aob) AQUITARD Groundwater Hydrogeological survey engineering Pearl River Delta China
下载PDF
羟胺对硝化菌活性及其动力学参数的影响
17
作者 曾天续 张永显 +6 位作者 严渊 刘宏 马娇 党鸿钟 吴新波 李维维 陈永志 《化工进展》 EI CAS CSCD 北大核心 2023年第6期3272-3280,共9页
采用序批式间歇反应器(SBR)处理模拟生活污水,研究羟胺(NH_(2)OH)对硝化菌活性、动力学参数及其对氨氧化菌(AOB)抑制后,AOB活性恢复的影响。批次试验结果表明,当NH_(2)OH浓度为4.5mg/L时,AOB活性最大,亚硝酸盐氧化菌(NOB)活性减小,并且N... 采用序批式间歇反应器(SBR)处理模拟生活污水,研究羟胺(NH_(2)OH)对硝化菌活性、动力学参数及其对氨氧化菌(AOB)抑制后,AOB活性恢复的影响。批次试验结果表明,当NH_(2)OH浓度为4.5mg/L时,AOB活性最大,亚硝酸盐氧化菌(NOB)活性减小,并且NO_(2)^(-)-N氧化速率(Q^(NOB)_(max))减小至8.00mg/(L·h),NO_(2)^(-)-N半饱和常数(K^(NOB)_(NO_(2)))增大至7.77mg/L,表明NH_(2)OH对NOB的抑制类型为混合抑制。长期试验R1、R2以缺氧/好氧模式运行,R3以好氧/缺氧交替4次运行,R1不投加NH_(2)OH,R2、R3投加NH_(2)OH。结果表明,R1中全程无亚硝积累。在R2中投加4.5mg/L NH_(2)OH,AOB活性为(6.04±0.4)mg N/(g MLVSS·h)。当NH_(2)OH浓度为10mg/L时,AOB和NOB的活性分别下降至(0.16±0.1)mg N/(g MLVSS·h)和(0.15±0.1)mg N/(g MLVSS·h),之后在高曝气且不投加NH_(2)OH的条件下,AOB活性在第5天恢复。在R3中投加4.5mg/L NH_(2)OH,第7天出水NO_(2)^(-)-N/NH_(4)^(+)-N为1.2。16S r RNA高通量测序表明,添加4.5mg/L NH_(2)OH后,R2和R3中AOB、NOB的相对丰度分别为6.6%、1.3%和3.0%、1.9%,AOB菌属为Ellin6067和Nitrosomonas,NOB菌属为Unidentified Nitrospiraceae。 展开更多
关键词 羟胺 氨氧化菌 亚硝酸盐氧化菌 短程硝化 aob活性恢复 动力学参数
下载PDF
Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant 被引量:4
18
作者 Golam MIslam Peter Vi Kimberley Ann Gilbride 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第12期120-130,共11页
The abundance of ammonia-oxidizing bacteria and archaea and their amo A genes from the aerobic activated sludge tanks,recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant(WWTP)was determi... The abundance of ammonia-oxidizing bacteria and archaea and their amo A genes from the aerobic activated sludge tanks,recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant(WWTP)was determined.Polymerase chain reaction and denaturing gradient gel electrophoresis were used to generate diversity profiles,which showed that each population had a consistent profile although the abundance of individual members varied.In the aerobic tanks,the ammonia-oxidizing bacterial(AOB)population was more than 350 times more abundant than the ammonia-oxidizing archaeal(AOA)population,however in the digesters,the AOA population was more than 10 times more abundant.Measuring the activity of the amo A gene expression of the two populations using RT-PCR also showed that the AOA amo A gene was more active in the digesters than in the activated sludge tanks.Using batch reactors and dd PCR,amo A activity could be measured and it was found that when the AOB amo A activity was inhibited in the anoxic reactors,the expression of the AOA amo A gene increased fourfold.This suggests that these two populations may have a cooperative relationship for the oxidation of ammonia. 展开更多
关键词 Wastewater treatment Topic:ammonia-oxidation ammonia-oxidizing bacteria(aob) ammonia-oxidizing archaea(AOA) PCR Digital droplet polymerase chain reaction(ddPCR)
原文传递
Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands 被引量:9
19
作者 Soulwène Kouki Neila Saidi +4 位作者 Fadhel M'hiri Houda Nasr Hanène Cherif Hadda Ouzari Abdennaceur Hassen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第10期1699-1708,共10页
Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater a... Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands, and then cultivated in a mixotrophic medium containing ammonium and acetic acid. A molecular characterization was accomplished using ITS-PCR amplification, and phylogenetic analysis based on 16S rRNA gene Sequences. Results showed the presence of 35 bacteria, among 400 initially heterotrophic isolates, that were able to remove ammonia. These 35 isolates were classified into 10 genetically different groups based on ITS pattern. Then, a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE≥ 80%) and their phylogenetic diversity. In conditions of mixotrophy, these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies, AOE between 79% and 87%). Among these facultative mixotrophic AOB, four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium), three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas, Ochrobactrum and Bordetella). 展开更多
关键词 ammonia-oxidizing bacteria mixotroph constructed wetlands ammonia oxidation macrophytes' rhizosphere
原文传递
Active ammonia-oxidizing bacteria and archaea in wastewater treatment systems 被引量:2
20
作者 Maosheng Zheng Shishi He +4 位作者 Yueqi Feng Mingyuan Wang Yong-Xin Liu Chenyuan Dang Jiawen Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第4期273-282,共10页
Ammonia-oxidizing bacteria(AOB)and archaea(AOA)are two microbial groups mediating nitrification,yet little is presently known about their abundances and community structures at the transcriptional level in wastewater ... Ammonia-oxidizing bacteria(AOB)and archaea(AOA)are two microbial groups mediating nitrification,yet little is presently known about their abundances and community structures at the transcriptional level in wastewater treatment systems(WWTSs).This is a significant issue,as the numerical abundance of AOA or AOB at the gene level may not necessarily represent their functional role in ammonia oxidation.Using amo A genes as molecular markers,this study investigated the transcriptional abundance and community structure of active AOA and AOB in 14 WWTSs.Quantitative PCR results indicated that the transcriptional abundances of AOB amo A(averaged:1.6×10^(8)copies g^(-1)dry sludge)were higher than those of AOA(averaged:3.4×10^(7)copies g^(-1)dry sludge)in all WWTSs despite several higher abundances of AOA amo A at the gene level.Moreover,phylogenetic analysis demonstrated that Nitrosomonas europaea and unknown clusters accounted for 37.66%and 49.96%of the total AOB amo A transcripts,respectively,suggesting their dominant role in driving ammonia oxidation.Meanwhile,AOA amo A transcripts were only successfully retrieved from 3 samples,and the Nitrosospaera sister cluster dominated,accounting for 83.46%.Finally,the substrate utilization kinetics of different AOA and AOB species might play a fundamental role in shaping their niche differentiation,community composition,and functional activity.This study provides a basis for evaluating the relative contributions of ammonia-oxidizing microorganisms(AOMs)to nitrogen conversions in WWTSs. 展开更多
关键词 ammonia-oxidizing bacteria ammonia-oxidizing archaea Transcriptional activity Community structure Wastewater treatment system
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部