[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transpor...[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.展开更多
RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them ...RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.展开更多
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anae...The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.展开更多
It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that ...It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.展开更多
High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying...High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying functional bacteria in tannery sludge contaminated soils,a series of contaminated soil culture experiments were conducted in this study.The contents of ammonium nitrogen(as NH_(4)^(+)-N),nitrite nitrogen(as NO_(2)^(−)-N)and nitrate nitrogen(as NO_(3)^(−)-N)were analyzed during the culture period under different conditions of pollution load,soil particle and redox environment.Sigmodial equation was used to interpret the change of NO_(3)^(−)-N with time in contaminated soils.The abundance variations of nitrifying functional genes(amoA and nxrA)were also detected using the real-time quantitative fluorescence PCR method.The results show that the nitrification of NH_(4)^(+)-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load,finer particle size and more oxidizing environment.The sigmodial equation well fitted the dynamic accumulation curve of the NO_(3)^(−)-N content in the tannery sludge contaminated soils.The Cr(III)content increased with increasing pollution load,which inhibited the reproduction and activity of nitrifying bacteria in the soils,especially in coarse-grained soil.The accumulation of NO_(2)^(−)-N contents became more obvious with the increase of pollution load in the fine sand,and only 41.5%of the NH_(4)^(+)-N was transformed to NO_(3)^(−)-N.The redox environment was the main factor affecting nitrification process in the soil.Compared to the aerobic soil environment,the transformation of NH_(4)^(+)-N was significantly inhibited under anaerobic incubation condition,and the NO_(3)^(−)-N contents decreased by 37.2%,61.9%and 91.9%under low,medium and high pollution loads,respectively.Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand.Moreover,the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment.The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.展开更多
Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the tra...Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the transport of NH4–N across mining area with hill slopes are not fully established.Here,laboratory column experiments were designed with an inclined slope(a sand box)to examine the spatial temporal transport of NH4–N in soils collected from the ionic rare earth elements(REE)mining area.An HYDRUS-2D model simulation of the experimental data over time showed that soils had a strong adsorption capacity toward NH4–N.Chemical non-equilibrium model(CNEM)could well simulate the transport of NH4–N through the soil-packed columns.The simulation of the transport-adsorption processes at three flow rates of leaching agents revealed that low flow rate enabled a longer residence time and an increased NH4-N adsorption,but reduced the extraction efficiency for REE.During the subsequent rainwater washing process,the presence of slope resulted in the leaching of NH4–N on the surface of the slope,while the leaching of NH4–N deep inside the column was inhibited.Furthermore,the high-intensity rainfall significantly increased the leaching,highlighting the importance of considering the impact of extreme weather conditions during the leaching process.Overall,our study advances the understanding of the transport of NH4–N in mining area with hills,the impact of flow rates of leaching agents and precipitation intensities,and presents as a feasible modeling method to evaluate the environmental risks of NH4–N pollution during and post REE in situ mining activities.展开更多
Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREE...Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREEQC program for NH4+-N recovery to evaluate the effect of reaction factors on MAP precipitation.The case study of NH4+-N recovery from coking wastewater was conducted to provide a comparison.Response surface methodology(RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions.Thermodynamic modeling indicated that the saturation index(SI) of MAP followed a polynomial function of pH.The SI of MAP increased logarithmically with the Mg2+/NH4+ molar ratio(Mg/N) and the initial NH4+-N concentration(CN),respectively,while it decreased with an increase in Ca2+/NH4+ and CO32?/NH4+ molar ratios(Ca/N and CO32?/N),respectively.The trends for NH4+-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions.The RSM analysis indicated that the factors including pH,Mg/N,CN,Ca/N,(Mg/N)×(CO32?/N),(pH)2,(Mg/N)2,and(CN)2 were significant.Response surface plots were useful for understanding the interaction effects on NH4+-N recovery.展开更多
A field experimental project was set up to assess the effects of controlled drainage on the distribution and concentration of nitrogen in the soil at the Irrigation and Drainage Experimental Station under Four-Lake En...A field experimental project was set up to assess the effects of controlled drainage on the distribution and concentration of nitrogen in the soil at the Irrigation and Drainage Experimental Station under Four-Lake Engineering Administration of Jingzhou City, Hubei Province. Two plots drain runoff by controlled drainage system, with an area of 0.1 hm^2 (20 m×50 m) each. The third one with an area of 0.04 hm^2 (8 m×50 m) has a conventional subsurface drainage system. Under this experimental condition, the study draws the following conclusions: ① The controlled drainage system has a remarkable effect on the diminishing ratios of nitrate nitrogen between neighboring layers. It is presented that the diminishing ratio increases with the raising height of drain outlet. Controlled drainage system also reduces the transference of nitrate nitrogen in topsoil.② Different from nitrate nitrogen, the concentration of ammonium nitrogen is stable along the longitudinal section of soil, which is little affected by the controlled drainage system. It indicates that the concentration of ammonium nitrogen decreases according to the lowering of controlling height of the drain outlet.展开更多
Nitrogen is an important fertilizer in tea production,but it is also an important factor in tea garden soil acidification.The relationship between absorption and transport of different forms of nitrogen in the tea pla...Nitrogen is an important fertilizer in tea production,but it is also an important factor in tea garden soil acidification.The relationship between absorption and transport of different forms of nitrogen in the tea plant and soil acidification is still unknown.In order to explore the different characteristics of absorption,utilization and distribution of nitrogen,stable isotope 15N tracer technique was used to measure the absorption,utilization and allocation of nitrate nitrogen(NO_(3-)15N)and ammonium nitrogen(NH4-15N)under the same nitrogen application amount of tea tree seedlings as experimental materials.The results showed that the tea seedlings had the same pattern of nitrogen application:tissue nitrogen content increased after fertilization,remarkable rising at 7 d and the absorption speed increased quickly after 28 d,finally reached its maximum at 56 d.The nitrogen use efficiency of two nitrogen sources in two kinds of soil varied not significantly.The maximum NUE of NO_(3-)^(15)N reached 12.66%,and at the same time NH_(4)-^(15)N utilization rose up to 11.54%.According to the absorption of soil nitrogen and nitrogen fertilizer in the two kinds of soil,it is concluded that the soil nitrogen cannot meet the growth needs of tea tree and extra nitrogen supply was required.The declined soil pH indicated that fertilizer should be used in moderation,which can not only satisfy the growth of tea tree but also to restrict soil acidification.展开更多
Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix ...Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in ...Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.展开更多
The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined...The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.展开更多
基金Supported by Major Project of Water Pollution Control and Treatment(2009ZX07424-002)~~
文摘[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.
文摘RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.
基金Project supported by the National Natural Science Foundation of China.
文摘The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.
文摘It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.
基金supported jointly by Natural Science Foundation of Hebei Province(D2020504003)National Key Research and Development Program of China(No.2019YFC1805300).
文摘High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying functional bacteria in tannery sludge contaminated soils,a series of contaminated soil culture experiments were conducted in this study.The contents of ammonium nitrogen(as NH_(4)^(+)-N),nitrite nitrogen(as NO_(2)^(−)-N)and nitrate nitrogen(as NO_(3)^(−)-N)were analyzed during the culture period under different conditions of pollution load,soil particle and redox environment.Sigmodial equation was used to interpret the change of NO_(3)^(−)-N with time in contaminated soils.The abundance variations of nitrifying functional genes(amoA and nxrA)were also detected using the real-time quantitative fluorescence PCR method.The results show that the nitrification of NH_(4)^(+)-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load,finer particle size and more oxidizing environment.The sigmodial equation well fitted the dynamic accumulation curve of the NO_(3)^(−)-N content in the tannery sludge contaminated soils.The Cr(III)content increased with increasing pollution load,which inhibited the reproduction and activity of nitrifying bacteria in the soils,especially in coarse-grained soil.The accumulation of NO_(2)^(−)-N contents became more obvious with the increase of pollution load in the fine sand,and only 41.5%of the NH_(4)^(+)-N was transformed to NO_(3)^(−)-N.The redox environment was the main factor affecting nitrification process in the soil.Compared to the aerobic soil environment,the transformation of NH_(4)^(+)-N was significantly inhibited under anaerobic incubation condition,and the NO_(3)^(−)-N contents decreased by 37.2%,61.9%and 91.9%under low,medium and high pollution loads,respectively.Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand.Moreover,the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment.The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.
基金the Financial of National Key Research and Development Project of China(No.2019YFC1805102)Partial supports are from the National Natural Science Foundation of China(Nos.42107228 and 41977266)Shanghai Pujiang Program(No.21PJ1401000)。
文摘Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the transport of NH4–N across mining area with hill slopes are not fully established.Here,laboratory column experiments were designed with an inclined slope(a sand box)to examine the spatial temporal transport of NH4–N in soils collected from the ionic rare earth elements(REE)mining area.An HYDRUS-2D model simulation of the experimental data over time showed that soils had a strong adsorption capacity toward NH4–N.Chemical non-equilibrium model(CNEM)could well simulate the transport of NH4–N through the soil-packed columns.The simulation of the transport-adsorption processes at three flow rates of leaching agents revealed that low flow rate enabled a longer residence time and an increased NH4-N adsorption,but reduced the extraction efficiency for REE.During the subsequent rainwater washing process,the presence of slope resulted in the leaching of NH4–N on the surface of the slope,while the leaching of NH4–N deep inside the column was inhibited.Furthermore,the high-intensity rainfall significantly increased the leaching,highlighting the importance of considering the impact of extreme weather conditions during the leaching process.Overall,our study advances the understanding of the transport of NH4–N in mining area with hills,the impact of flow rates of leaching agents and precipitation intensities,and presents as a feasible modeling method to evaluate the environmental risks of NH4–N pollution during and post REE in situ mining activities.
基金supported by the National High Technology Research and Development Program(863) of China(No.2009AA033003)the National Water Pollution Control and Management Science and Technology Breakthrough Program(No.2009ZX07106-004)+2 种基金the Scientific Research Foundation of Graduate School of Jiangsu Province(No.CX09B 013Z)the Key Technology Research and Development Program of Jiangsu Province (No.BE2008668)the Ph.D Candidate Academic Foundation of Ministry of Education of China
文摘Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREEQC program for NH4+-N recovery to evaluate the effect of reaction factors on MAP precipitation.The case study of NH4+-N recovery from coking wastewater was conducted to provide a comparison.Response surface methodology(RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions.Thermodynamic modeling indicated that the saturation index(SI) of MAP followed a polynomial function of pH.The SI of MAP increased logarithmically with the Mg2+/NH4+ molar ratio(Mg/N) and the initial NH4+-N concentration(CN),respectively,while it decreased with an increase in Ca2+/NH4+ and CO32?/NH4+ molar ratios(Ca/N and CO32?/N),respectively.The trends for NH4+-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions.The RSM analysis indicated that the factors including pH,Mg/N,CN,Ca/N,(Mg/N)×(CO32?/N),(pH)2,(Mg/N)2,and(CN)2 were significant.Response surface plots were useful for understanding the interaction effects on NH4+-N recovery.
基金Supported by the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (2006BAD11B06)
文摘A field experimental project was set up to assess the effects of controlled drainage on the distribution and concentration of nitrogen in the soil at the Irrigation and Drainage Experimental Station under Four-Lake Engineering Administration of Jingzhou City, Hubei Province. Two plots drain runoff by controlled drainage system, with an area of 0.1 hm^2 (20 m×50 m) each. The third one with an area of 0.04 hm^2 (8 m×50 m) has a conventional subsurface drainage system. Under this experimental condition, the study draws the following conclusions: ① The controlled drainage system has a remarkable effect on the diminishing ratios of nitrate nitrogen between neighboring layers. It is presented that the diminishing ratio increases with the raising height of drain outlet. Controlled drainage system also reduces the transference of nitrate nitrogen in topsoil.② Different from nitrate nitrogen, the concentration of ammonium nitrogen is stable along the longitudinal section of soil, which is little affected by the controlled drainage system. It indicates that the concentration of ammonium nitrogen decreases according to the lowering of controlling height of the drain outlet.
基金This project was financially supported by the National Natural Science Funds of China under the contract of No.41201224,31200035.
文摘Nitrogen is an important fertilizer in tea production,but it is also an important factor in tea garden soil acidification.The relationship between absorption and transport of different forms of nitrogen in the tea plant and soil acidification is still unknown.In order to explore the different characteristics of absorption,utilization and distribution of nitrogen,stable isotope 15N tracer technique was used to measure the absorption,utilization and allocation of nitrate nitrogen(NO_(3-)15N)and ammonium nitrogen(NH4-15N)under the same nitrogen application amount of tea tree seedlings as experimental materials.The results showed that the tea seedlings had the same pattern of nitrogen application:tissue nitrogen content increased after fertilization,remarkable rising at 7 d and the absorption speed increased quickly after 28 d,finally reached its maximum at 56 d.The nitrogen use efficiency of two nitrogen sources in two kinds of soil varied not significantly.The maximum NUE of NO_(3-)^(15)N reached 12.66%,and at the same time NH_(4)-^(15)N utilization rose up to 11.54%.According to the absorption of soil nitrogen and nitrogen fertilizer in the two kinds of soil,it is concluded that the soil nitrogen cannot meet the growth needs of tea tree and extra nitrogen supply was required.The declined soil pH indicated that fertilizer should be used in moderation,which can not only satisfy the growth of tea tree but also to restrict soil acidification.
文摘Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
文摘Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.
基金Supported by National Natural Science Foundation of China(41371259)Hubei Natural Science Foundation(2014CFB545)~~
文摘The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.