Oxidizing roasting of molybdenite with lime can significantly reduce SO2pollution compared with the traditional roastingwithout lime.However,the calcine is subsequently leached by sulfuric acid,resulting in serious eq...Oxidizing roasting of molybdenite with lime can significantly reduce SO2pollution compared with the traditional roastingwithout lime.However,the calcine is subsequently leached by sulfuric acid,resulting in serious equipment corrosion and abundantnon-recyclable CaSO4slag.In this work,a novel process,in which the molybdenite was roasted with CaCO3followed by(NH4)2CO3solution leaching,was proposed to improve the art of lime roasting-sulfuric acid leaching.Oxidizing roasting of molybdenite withCaCO3was investigated through thermodynamic calculation,thermogravimetric analysis and roasting experiments.The results showthat the products of the oxidizing reaction of MoS2in the presence of CaCO3and O2are CaSO4,CaMoO4and CO2at573-1000K.The MoS2conversion rate achieves approximately99%and the sulfur-retained rate attains approximately95%with aCaCO3-to-MoS2molar ratio of3.6at500°C for1h by adding5%mineralizer A(mass fraction).The leaching results show that theleaching rate of Mo reaches98.2%at85°C for7h with a(NH4)2CO3concentration of600g/L and a liquid-solid ratio of10mL/g.The results presented are potential to develop a novel cleaner technique for ammonium molybdate production.展开更多
Hemicellulose has a wide range of applications,including that as an emulsifier for the food industry and raw material for the synthesis of bioethanol/biochemicals and biodegradable films.Hemicellulose is usually prese...Hemicellulose has a wide range of applications,including that as an emulsifier for the food industry and raw material for the synthesis of bioethanol/biochemicals and biodegradable films.Hemicellulose is usually present as a spent liquor,such as the prehydrolysis liquor of the prehydrolysis kraft dissolving pulp production process and the alkali extraction liquor of the cold caustic extraction of pulp fibers.Due to its dilute nature,hemicellulose needs to be dried for practical utilization,and this is challenging.In this study,cellulose and hemicellulose in a bleached bamboo kraft pulp were separated using an alkali extraction process.Hemicellulose obtained from the extraction liquor was dried by an ammonium carbonate-assisted drying process.The effects of drying time and drying temperature were determined.Structure of the hemicellulose obtained by the ammonium carbonate-assisted drying process was similar to that of original hemicellulose,as revealed by detailed Fourier transform infrared and X-ray diffraction analyses.The novel drying method was more energy efficient and required a shorter drying time than the conventional freeze drying method,and the excellent solubility in alkaline solutions favored the chemical modification of hemicellulose.The dried hemicellulose can be used as a renewable raw material for the preparation of hydrogels and other substances such as bioethanol/biochemicals and biodegradable films.展开更多
The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and...The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.展开更多
The research was mainly based on the formation condition of crystalline ammoniu yttrium carbonate and the variation characteristics of PH value during the crystallization in which NH4HCO3 was used to precipitate yt...The research was mainly based on the formation condition of crystalline ammoniu yttrium carbonate and the variation characteristics of PH value during the crystallization in which NH4HCO3 was used to precipitate yttrium ion. It is found that the crystallization process is always associated with the descent of pH. The pH of solution is controlled by the crystallization reaction of ammonium yttrium carbonate and the hydrolysis of NH4HCO3. Based on the pH variation, it can be judged whether the crystallization reaction occurs or not and the speed and the degree of crystallinity can be deterolfned. The precipitates were characterized by X- ray powder diffraction and differential thermal -thermogravimetric analysis. The results show that the crystallization is the process of NH4Y(CO3)2 formation and it is effected by feed ratio and feed method.展开更多
A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to ...A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to obtain the spherical cobalt carbonate with low sulfur content.The experimental results show that the feeding method,final p H value of the precipitation reaction slurry and the concentration of the cobalt sulfate solution have obvious effects on the sulfur content,morphology and particle size distribution of the precursor.The sulfur content of the precursor is 0.0115 wt.%under the optimized conditions.The hydrothermal treatment with temperatures of 125-150℃can transform the precursor of cobaltous dihydroxycarbonate into spherical cobalt carbonate and decrease the sulfur content to 0.0030 wt.%in the obtained product.展开更多
The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising ...The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising temperature, prolonging duration, increasing ammonia concentration and decreasing ammonium carbonate concentration favor dissolving of ammonium paratungstate at temperature below 90 ℃, while the WO3 concentration decreases after a certain time at temperature above 100 ℃. Furthermore, the undissolved tungsten exists in the form of either APT·4 H2O below 90 ℃ or pyrochlore-type tungsten trioxide above 100℃. In dissolving process, the ammonium paratungstate dissolves into paratungstate ions followed by partially converting to tungstate ion, resulting in the coexistence of the both ions. This study may provide a new idea to exploit a novel technique for manufacturing ammonium paratungstate and pyrochlore-type tungsten trioxide.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area...Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.展开更多
γ-Al2O3 was prepared by hydrothermal synthesis usingρ-Al2O3 and urea as raw materials.In this work,the eff ects of the molar ratio of CO(NH2)2/Al and reaction temperature were investigated,and a Pt–Sn–K/γ-Al2O3 c...γ-Al2O3 was prepared by hydrothermal synthesis usingρ-Al2O3 and urea as raw materials.In this work,the eff ects of the molar ratio of CO(NH2)2/Al and reaction temperature were investigated,and a Pt–Sn–K/γ-Al2O3 catalyst was prepared.The ammonium aluminum carbonate hydroxide(AACH),γ-Al2O3,and Pt–Sn–K/γ-Al2O3 were characterized by X-ray diff raction,scanning electron microscopy,transmission electron microscopy,N2 adsorption–desorption,thermogravimetry–differential thermal analysis,and NH3 temperature-programmed desorption techniques.The reactivity of Pt–Sn–K/γ-Al2O3 for propane dehydrogenation was tested in a micro-fixed-bed reactor.The results show thatγ-Al2O3 with a specific surface area of 358.1 m 2/g and pore volume of 0.96 cm 3/g was obtained when the molar ratio of CO(NH2)2/Al was 3:1 and the reaction temperature was 140℃.The alumina obtained by calcination of AACH has a higher specific surface area and larger pore volume than the industrial pseudo-boehmite does.The catalyst prepared from AACH as precursor showed high selectivity and conversion,which can reach 96.1%and 37.6%,respectively,for propane dehydrogenation.展开更多
Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the...Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.展开更多
Ammonium aluminum carbonate hydroxide (AACH) was synthesized by the reaction of ammonium aluminum sulphate (AA) with ammonium hydrogen carbonate (AHC). AA was obtained by the reaction of NH4HSO4 with aluminum scraps a...Ammonium aluminum carbonate hydroxide (AACH) was synthesized by the reaction of ammonium aluminum sulphate (AA) with ammonium hydrogen carbonate (AHC). AA was obtained by the reaction of NH4HSO4 with aluminum scraps as the raw materials. According to this method, AACH samples prepared were used to fabricate nano alumina powders by thermal decomposition. The microstructural properties of as-formed alumina were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), special surface analysis and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Experimental observations revealed that highly pure (99.99%) α-alumina with mean diameter of 49 nm could be obtained.展开更多
Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffr...Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.展开更多
Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biomineral...Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-a-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150℃) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.展开更多
基金Project(51274243)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘Oxidizing roasting of molybdenite with lime can significantly reduce SO2pollution compared with the traditional roastingwithout lime.However,the calcine is subsequently leached by sulfuric acid,resulting in serious equipment corrosion and abundantnon-recyclable CaSO4slag.In this work,a novel process,in which the molybdenite was roasted with CaCO3followed by(NH4)2CO3solution leaching,was proposed to improve the art of lime roasting-sulfuric acid leaching.Oxidizing roasting of molybdenite withCaCO3was investigated through thermodynamic calculation,thermogravimetric analysis and roasting experiments.The results showthat the products of the oxidizing reaction of MoS2in the presence of CaCO3and O2are CaSO4,CaMoO4and CO2at573-1000K.The MoS2conversion rate achieves approximately99%and the sulfur-retained rate attains approximately95%with aCaCO3-to-MoS2molar ratio of3.6at500°C for1h by adding5%mineralizer A(mass fraction).The leaching results show that theleaching rate of Mo reaches98.2%at85°C for7h with a(NH4)2CO3concentration of600g/L and a liquid-solid ratio of10mL/g.The results presented are potential to develop a novel cleaner technique for ammonium molybdate production.
基金the National Key Research and Development Program of China(2017YFB0307900,2019YFC1905903)the National Natural Science Foundation of China(31700507)the Major Project on the Integration of Industry-Education-Research of Fujian Provincial Department of Science and Technology(2018H6003).
文摘Hemicellulose has a wide range of applications,including that as an emulsifier for the food industry and raw material for the synthesis of bioethanol/biochemicals and biodegradable films.Hemicellulose is usually present as a spent liquor,such as the prehydrolysis liquor of the prehydrolysis kraft dissolving pulp production process and the alkali extraction liquor of the cold caustic extraction of pulp fibers.Due to its dilute nature,hemicellulose needs to be dried for practical utilization,and this is challenging.In this study,cellulose and hemicellulose in a bleached bamboo kraft pulp were separated using an alkali extraction process.Hemicellulose obtained from the extraction liquor was dried by an ammonium carbonate-assisted drying process.The effects of drying time and drying temperature were determined.Structure of the hemicellulose obtained by the ammonium carbonate-assisted drying process was similar to that of original hemicellulose,as revealed by detailed Fourier transform infrared and X-ray diffraction analyses.The novel drying method was more energy efficient and required a shorter drying time than the conventional freeze drying method,and the excellent solubility in alkaline solutions favored the chemical modification of hemicellulose.The dried hemicellulose can be used as a renewable raw material for the preparation of hydrogels and other substances such as bioethanol/biochemicals and biodegradable films.
文摘The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.
文摘The research was mainly based on the formation condition of crystalline ammoniu yttrium carbonate and the variation characteristics of PH value during the crystallization in which NH4HCO3 was used to precipitate yttrium ion. It is found that the crystallization process is always associated with the descent of pH. The pH of solution is controlled by the crystallization reaction of ammonium yttrium carbonate and the hydrolysis of NH4HCO3. Based on the pH variation, it can be judged whether the crystallization reaction occurs or not and the speed and the degree of crystallinity can be deterolfned. The precipitates were characterized by X- ray powder diffraction and differential thermal -thermogravimetric analysis. The results show that the crystallization is the process of NH4Y(CO3)2 formation and it is effected by feed ratio and feed method.
基金Project(51874372)supported by the National Natural Science Foundation of China
文摘A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to obtain the spherical cobalt carbonate with low sulfur content.The experimental results show that the feeding method,final p H value of the precipitation reaction slurry and the concentration of the cobalt sulfate solution have obvious effects on the sulfur content,morphology and particle size distribution of the precursor.The sulfur content of the precursor is 0.0115 wt.%under the optimized conditions.The hydrothermal treatment with temperatures of 125-150℃can transform the precursor of cobaltous dihydroxycarbonate into spherical cobalt carbonate and decrease the sulfur content to 0.0030 wt.%in the obtained product.
基金Project(51274243) supported by the National Natural Science Foundation of China
文摘The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising temperature, prolonging duration, increasing ammonia concentration and decreasing ammonium carbonate concentration favor dissolving of ammonium paratungstate at temperature below 90 ℃, while the WO3 concentration decreases after a certain time at temperature above 100 ℃. Furthermore, the undissolved tungsten exists in the form of either APT·4 H2O below 90 ℃ or pyrochlore-type tungsten trioxide above 100℃. In dissolving process, the ammonium paratungstate dissolves into paratungstate ions followed by partially converting to tungstate ion, resulting in the coexistence of the both ions. This study may provide a new idea to exploit a novel technique for manufacturing ammonium paratungstate and pyrochlore-type tungsten trioxide.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
基金Project(51874372)supported by the National Natural Science Foundation of China。
文摘Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.
基金Hebei University of Technology and CNOOC Tianjin Chemical Research and Design Institute Co.,Ltd.
文摘γ-Al2O3 was prepared by hydrothermal synthesis usingρ-Al2O3 and urea as raw materials.In this work,the eff ects of the molar ratio of CO(NH2)2/Al and reaction temperature were investigated,and a Pt–Sn–K/γ-Al2O3 catalyst was prepared.The ammonium aluminum carbonate hydroxide(AACH),γ-Al2O3,and Pt–Sn–K/γ-Al2O3 were characterized by X-ray diff raction,scanning electron microscopy,transmission electron microscopy,N2 adsorption–desorption,thermogravimetry–differential thermal analysis,and NH3 temperature-programmed desorption techniques.The reactivity of Pt–Sn–K/γ-Al2O3 for propane dehydrogenation was tested in a micro-fixed-bed reactor.The results show thatγ-Al2O3 with a specific surface area of 358.1 m 2/g and pore volume of 0.96 cm 3/g was obtained when the molar ratio of CO(NH2)2/Al was 3:1 and the reaction temperature was 140℃.The alumina obtained by calcination of AACH has a higher specific surface area and larger pore volume than the industrial pseudo-boehmite does.The catalyst prepared from AACH as precursor showed high selectivity and conversion,which can reach 96.1%and 37.6%,respectively,for propane dehydrogenation.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.
基金the National Natural Science Foundation of China (NSFC 20503015)
文摘Ammonium aluminum carbonate hydroxide (AACH) was synthesized by the reaction of ammonium aluminum sulphate (AA) with ammonium hydrogen carbonate (AHC). AA was obtained by the reaction of NH4HSO4 with aluminum scraps as the raw materials. According to this method, AACH samples prepared were used to fabricate nano alumina powders by thermal decomposition. The microstructural properties of as-formed alumina were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), special surface analysis and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Experimental observations revealed that highly pure (99.99%) α-alumina with mean diameter of 49 nm could be obtained.
基金Funded by the Defense Preresearch Project of the Eleventh-Five-Year-Plan of China(No.51312040404)
文摘Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.
文摘Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-a-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150℃) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.