期刊文献+
共找到1,152篇文章
< 1 2 58 >
每页显示 20 50 100
Promoting amorphization of commercial TiO_(2) upon sodiation to boost the sodium storage performance
1
作者 Tao Li Ling-Yun Kong +2 位作者 Xue Bai Yan-Xiang Wang Yong-Xin Qi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期379-388,I0009,共11页
Anatase TiO_(2) is a promising anode material for sodium-ion batteries,yet the low electronic and ionic conductivities are the main obstacles for its practical application.Even though the amorphization of TiO_(2) upon... Anatase TiO_(2) is a promising anode material for sodium-ion batteries,yet the low electronic and ionic conductivities are the main obstacles for its practical application.Even though the amorphization of TiO_(2) upon sodiation has already been observed,its underneath mechanisms are not fully elucidated.Herein,a low-cost nitrogen-containing carbon source of polyacrylonitrile is adopted to modify commercial anatase TiO_(2) by a convenient and nontoxic ball-milling technique combined with subsequent annealing treatment.In particular,the employment of a nitrogen-doping approach accompanied by nitrogendoped carbon coating,results in a greatly improved conductivity,overall leading to a high reversible capacity of about 260 m A h g^(-1)at 25 m A g^(-1),superior rate capabilities,and an ultra-stable capacity of about 186 m A h g^(-1)after 1600 cycles at 500 m A g^(-1).Detailed characterizations denote that the improved conductivity as well as the small size of the synthesized TiO_(2) grains play a key role in the TiO_(2) amorphization upon sodiation,with the TiO_(2)/C nanocomposite undergoing a complete amorphization in just few cycles.Finally,the irreversible amorphization of TiO_(2) is confirmed to be a crucial ingredient facilitating the Na+diffusion kinetics and pseudocapacitive behavior,thus boosting the sodium storage performance. 展开更多
关键词 Commercial TiO_(2) Anode material amorphization Nitrogen doping Sodium-ion battery
下载PDF
Amorphization activated FeB_(2) porous nanosheets enable efficient electrocatalytic N_(2) fixation 被引量:4
2
作者 Ke Chu Weicong Gu +3 位作者 Qingqing Li Yaping Liu Ye Tian Wuming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期82-89,I0004,共9页
Designing active,robust and cost-effective catalysts for the nitrogen reduction reaction(NRR) is of paramount significance for sustainable electrochemical NH3 synthesis.Transition-metal diborides(TMB_2)have been recen... Designing active,robust and cost-effective catalysts for the nitrogen reduction reaction(NRR) is of paramount significance for sustainable electrochemical NH3 synthesis.Transition-metal diborides(TMB_2)have been recently theoretically predicted to be a new class of potential NRR catalysts,but direct experimental evidence is still lacking.Herein,we present the first experimental demonstration that amorphous FeB_2 porous nanosheets(a-FeB_2 PNSs) could be a highly efficient NRR catalyst,which exhibited an NH3 yield of 39.8 μg h^(-1) mg^(-1)(-0.3 V) and a Faradaic efficiency of 16.7%(-0.2 V),significantly outperforming their crystalline counterpart and most of existing NRR catalysts.First-principle calculations unveiled that the amorphization could induce the upraised d-band center of a-FeB_2 to boost d-2π~* coupling between the active Fe site and ~*N_2 H intermediate,resulting in enhanced ~*N_2 H stabilization and reduced reaction barrier.Out study may facilitate the development and understanding of earth-abundant TMB_2-based catalysts for electrocatalytic N_2 fixation. 展开更多
关键词 Electrocatalytic nitrogen fixation Transition-metal diborides amorphization Density functional theory
下载PDF
AMORPHIZATION IN Nb-M (M=Fe, Co, Ni) BINARY METAL SYSTEMS INDUCED BY ION BEAM ASSISTED DEPOSITION (IBAD) 被引量:1
3
作者 F.Pan, F. Zeng and B. Zhao Laboratory of Advanced Materials, Department of Materials and Engineering, Tsinghua University, Beijing 100084, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第2期160-166,共7页
Ion beam assisted deposition technique (IBAD) was utilized to systematically study amorphization in binary metal systems of Nb-magnetic element, i.e., Nb-M (M=Fe, Co or Ni). The glass forming range termed as Nb fracti... Ion beam assisted deposition technique (IBAD) was utilized to systematically study amorphization in binary metal systems of Nb-magnetic element, i.e., Nb-M (M=Fe, Co or Ni). The glass forming range termed as Nb fraction of Nb-Fe system was about 34at.% to 56at.%, that of Nb-Co system was about 32at.% to 72at.% and that of Nb-Ni about 20at. % to 80at. %. Similar percolation patterns were found in amorphous alloy films. The fractal dimensions of the percolation patterns approach to 2, which indicates 2-D layer growth for amorphous phases. It is regarded that the assisted Ar+ ion beam during the deposition process plays important role for the 2-D layer growth. Some metastable crystalline phases were obtained in these three systems by IBAD, e.g., bcc supersaturated solid solutions in Nb-Fe and Nb-Co systems, fcc and hcp phases in Nb-Co and Nb-Ni systems. The formation and competing between the amorphous and the metastable crystalline phases were determined by both the phases' thermodynamic states in binary metal systems and kinetics during IBAD process. 展开更多
关键词 amorphization ion beam assisted deposition glass forming range metastable phase
下载PDF
AMORPHIZATION TRANSFORMATION BY MECHANICAL ALLOYING IN THE Mo-Si SYSTEM 被引量:1
4
作者 M.W. Li R.Z. Tang and W.X. Li (Department of Materials Science and Engineering, Central South University of Technology, Changsha 410083, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第2期134-140,共7页
Starting from elemental powders, complete MoSi2 powder forms abruptly between 3.5and 4 h during mechanical alloying (MA) of the Mo-66 at.% Si powders. Continuous milling of this MoSi2 Phase leads to a nanocrystalline ... Starting from elemental powders, complete MoSi2 powder forms abruptly between 3.5and 4 h during mechanical alloying (MA) of the Mo-66 at.% Si powders. Continuous milling of this MoSi2 Phase leads to a nanocrystalline powder and amorphizationtransformation takes place after 100 h milling. Howeven MA of the Mo-37.5 at.%Si powders does not result in the formation of the Mo5Si3 crystalline phase, but the formation of a Mo(Si) supersaturated solid solution (SSS) and a completely amorphots phase after 5 h and 70 h milling, respectively. The free energy of the Mo-Sisystem has been calculated and it has been found that there is no driving force for the amorphization reaction under normal conditions. The amorphization by MA of the Mo-Si system is attributed to a solid-state amorphization reaction in which defects and a very fine grain size induced during milling process may raise the free energy of the crystalline intermetallic phase (for MoSi2) or the Mo(Si) supersaturated solid solution (for Mo5Si3) above that of the amorphous phase. 展开更多
关键词 mechanical alloying molybdenum silicide amorphization transformation
下载PDF
Krypton ion irradiation-induced amorphization and nano-crystal formation in pyrochlore Lu_2Ti_2O_7 at room temperature 被引量:1
5
作者 谢秋荣 张建 +2 位作者 尹东明 郭奇勋 李宁 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期426-430,共5页
Polycrystalline pyrochlore Lu2Ti2O7 pellets are irradiated with 600-keV Kr^3+ions up to a fluence of 1.45 ×10^16Kr^3+/cm^2. Irradiation induced structural modifications are examined by using grazing incidence x... Polycrystalline pyrochlore Lu2Ti2O7 pellets are irradiated with 600-keV Kr^3+ions up to a fluence of 1.45 ×10^16Kr^3+/cm^2. Irradiation induced structural modifications are examined by using grazing incidence x-ray diffraction(GIXRD) and cross-sectional transmission electron microscopy(TEM). The GIXRD reveals that amorphous fraction increases with the increase of fluences up to 2 × 10^15Kr^3+/cm^2, and the results are explained with a direct-impact model.However, when the irradiation fluence is higher than 2 × 10^15Kr^3+/cm^2, the amorphous fraction reaches a saturation of-80%. Further TEM observations imply that nano-crystal is formed with a diameter of -10 nm within the irradiation layer at a fluence of 4 × 10^15Kr^3+/cm^2. No full amorphization is achieved even at the highest fluence of 1.45 × 10^16Kr^3+/cm^2(-36 displacement per atom). The high irradiation resistance of pyrochlore Lu2Ti2O7 at higher fluence is explained on the basis of enhanced radiation tolerance of nano-crystal structure. 展开更多
关键词 radiation damage amorphization nano-crystals ceramics
下载PDF
Formation of interfacial Al-Ce-Cu-W amorphous layers in aluminum matrix composite through thermally driven solid-state amorphization
6
作者 Zheng Lü Chang-hui Mao +3 位作者 Jian Wang Qiu-shi Liang Shu-wang Ma Wen-jing Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期970-979,共10页
Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures wer... Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system. 展开更多
关键词 aluminum matrix composite CONSOLIDATION INTERFACES diffusion solid-state amorphization
下载PDF
Mechanically-driven Amorphization in Metallic Systems
7
作者 Yuanda DONG Dept.of Metallurgy and Materials,Shanghai University of Technology,Shanghai,200072,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第3期161-166,共6页
The mechanism of mechanically-driven amorphization was extensively surveyed in various systems. It was concluded that the amorphization could occur in the systems of Cu-Zr with a negative heat of mixing (-ΔH) and Cu-... The mechanism of mechanically-driven amorphization was extensively surveyed in various systems. It was concluded that the amorphization could occur in the systems of Cu-Zr with a negative heat of mixing (-ΔH) and Cu-Ta with a positive heat of mixing (+ΔH) by mechanical alloying of elemental powders.Such amorphization could also be started from an intermetallic compound Cu_xZr_y with no chemical reaction involved.The energy storage by mechanical attrition should be the driving force for the amorphization.The atomic distribution function and nuclear resonance spectroscopic studies show that the mechanical alloying provides a true alloying on an atomic level.The alloys formed are of a characteristic structure common to the rapidly quenched amorphous alloys. 展开更多
关键词 mechanically-driven amorphization metallic system Cu-Zr Cu-Ta
下载PDF
Hydrogen-induced amorphization of Zr-Cu-Ni-Al alloy
8
作者 Fu-yu Dong Song-song Lu +7 位作者 Yue Zhang Qing-chun Xiang Hong-jun Huang Xiao-guang Yuan Xiao-jiao Zuo Liang-shun Luo Yan-qing Su Bin-bin Wang 《China Foundry》 SCIE 2017年第2期145-150,共6页
Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidificatio... Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidification structure and glass-forming ability of Zr_(55)Cu_(30)Ni_5Al_(10) alloy were determined by examining microstructures in different parts of the cast ingots. The results showed that different degrees of crystallization structures were obtained in the ascast button ingots after arc melting in high-purity Ar, and the cross-sectional solidification morphology of arcmelted ingots was found to consist of crystals with varying from the bottom up. By contrast, there were completely amorphous structures in the middle and upper areas of the as-cast button ingots fabricated by adding 10% H_2 to the high-purity Ar atmosphere. A clear solidification interface was found between the crystal and glass in the ascast button ingots, which indicates that hydrogen addition can enhance the Zr_(55)Cu_(30)Ni_5Al_(10) alloy's glass-forming ability. The precise mechanism responsible for this was also investigated. 展开更多
关键词 Zr-Cu-Ni-Al 合金 融化加氢 团结结构 导致氢的 amorphization TG146.4+14 A
下载PDF
High-Pressure Irreversible Amorphization of La<sub>1/3</sub>NbO<sub>3</sub>
9
作者 Itzhak Halevy Amir Hen +3 位作者 Amir Broide Mike L. Winterrose Shimon Zalkind Zhiqiang Chen 《Journal of Modern Physics》 2011年第5期323-334,共12页
The crystallographic structure of La1/3NbO3 perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angl... The crystallographic structure of La1/3NbO3 perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at ~10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization. 展开更多
关键词 La1/3NbO3 High-Pressure amorphization Perovskites
下载PDF
Amorphization and magnetic properties of Fe_(62)Nb_(38) mechanically alloyed powders
10
作者 QINHongwei HUJifan YANGFuming 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期231-234,共4页
The amorphization and magnetic properties of Fe_(62)Nb_(38) mechanicallyalloyed powders were investigated. In the initial mechanical alloying processes, the latticestructure of pure Fe is destroyed due to the cold-wel... The amorphization and magnetic properties of Fe_(62)Nb_(38) mechanicallyalloyed powders were investigated. In the initial mechanical alloying processes, the latticestructure of pure Fe is destroyed due to the cold-welding and fracturing, accompanying the reductionof ferromagnetic properties. The M_S value of Fe_(62)Nb_(38) powders with ball-milling time t = 6 his only 48.1 A·m^2/kg. With prolongating of mechanical alloying processes, a solid stateamorphization reaction (SSAR) takes place and the Fe-Nb ferromagnetic amorphous phase is formed.With the milling time increasing from 6 to 18 h, the saturation magnetization of Fe_(62)Nb_(38)powders increases with enhancement of the proportion of ferromagnetic amorphous phase in milledpowders. The M_S value of the Fe_(62)Nb_(38) amorphous powders is 98 A·m^2/kg, which is very closeto the value estimated from dilute model. However, the Curie temperature of the Fe_(62)Nb_(38)amorphous phase is only 206℃, which is much smaller than that of the pure Fe. This implies that theexchange interaction between Fe atoms in amorphous alloyed Fe_(62)Nb_(38) becomes weak due to theNb dilution. Investigation shows that the variation of magnetic properties of milled powders is oneof important tools for describing the amorphization by mechanical alloying. 展开更多
关键词 metallic materials AMORPHOUS magnetic properties mechanical alloying
下载PDF
SOLED STATE AMORPHIZATION REACTION REACTION UNDER HIGH PRESSURE
11
作者 严志华 李金峰 王文魁 《Chinese Physics Letters》 SCIE CAS CSCD 1989年第4期173-176,共4页
The solid state reaction of Nigo Tigo multilayer under high pressure was carried out to investigate the effect of pressure on the amorphization process.Under the pressure of BOkbars amorphization reaction could not oc... The solid state reaction of Nigo Tigo multilayer under high pressure was carried out to investigate the effect of pressure on the amorphization process.Under the pressure of BOkbars amorphization reaction could not occur at 250℃while amorphous phase formed by isothermal annealing at same temperature in vacuum as well as lower pressure.It is suggested that the effect of pressure on diffusion played a predominant role,and Ni atom should diffuse into Ti layers with vacancy mechanism rather than interstitial one. 展开更多
关键词 PROCESS ANNEALING AMORPHOUS
下载PDF
Crystalline-amorphization-recrystallization structural transition and emergent superconductivity in van der Waals semiconductor SiP under compression
12
作者 Chunhua Chen Zhenyu Ding +11 位作者 Yonghui Zhou Yifang Yuan Nixian Qian Jing Wang Shuyang Wang Ying Zhou Chao An Min Zhang Xuliang Chen Xiaoping Yang Mingliang Tian Zhaorong Yang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第5期115-122,共8页
van der Waals(vdW)semiconductors have gained significant attention due to their unique physical properties and promising applications,which are embedded within distinct crystallographic symmetries.Here,we report a pre... van der Waals(vdW)semiconductors have gained significant attention due to their unique physical properties and promising applications,which are embedded within distinct crystallographic symmetries.Here,we report a pressure-induced crystallineamorphization-recrystallization transition under compression in binary vdW semiconductor SiP.Upon compression to 52 GPa,bulk SiP undergoes a consecutive phase transition from pristine crystalline to amorphous phase,ultimately to recrystallized phase.By employing synchrotron X-ray diffraction experiments in conjunction with high-pressure crystal structure searching techniques,we reveal that the recrystallized Si P hosts a tetragonal structure(space group I4mm)and further transforms partially into a cubic phase(space group Fm3m).Consistently,electrical transport and alternating-current magnetic susceptibility measurements indicate the presence of three superconducting phases,which are embedded in separate crystallographic symmetries—the amorphous,tetragonal,and cubic structures.Furthermore,a high superconducting transition temperature of 12.3 K is observed in its recovered tetragonal phase during decompression.Our findings uncover a novel phase evolution path and elucidate a pressure-engineered structure-property relationship in vdW semiconductor SiP.These results not only offer a new platform to explore the transformation between different structures and functionalities,but also provide new opportunities for the design and exploration of advanced devices based on vdW materials. 展开更多
关键词 RECRYSTALLIZATION transition AMORPHOUS
原文传递
High-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))_(2)Hf_(2)O_(7) ceramic with superb resistance to radiation-induced amorphization 被引量:1
13
作者 Jingxin Wu Meng Zhang +11 位作者 Zhanqiang Li Minzhong Huang Huiming Xiang Liyan Xue Zhengming Jiang Zhigang Zhao Lianfeng Wei Yong Zheng Fan Yang Guang Ran Yanchun Zhou Heng Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第24期1-9,共9页
Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)h... Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)high-entropy ceramic(HE-RE2 Hf_(2)O_(7))for control rod was prepared by solid-state reaction method.The ion irradiation of HE-RE_(2) Hf_(2)O_(7)with 400 keV Kr+at 400℃was investigated using a 400 kV ion implanter and compared with single-component pyrochlore Gd2 Hf_(2)O_(7)to evaluate the irradiation resistance.For HE-RE2 Hf_(2)O_(7),the phase transition from pyrochlore to defective fluorite is revealed after irradiation at 60 dpa.After irradiation at 120 dpa,it maintained crystalline,which is comparable to Gd2 Hf_(2)O_(7)but superior to the titanate pyrochlores previously studied.Moreover,the lattice expansion of HE-RE2 Hf_(2)O_(7)(_(0.2)2%)is much lower than that of Gd2 Hf_(2)O_(7)(0.62%),indicating excellent irradiation damage resistance.Nanoindentation tests displayed an irradiation-induced increase in hardness and a decrease in elastic modulus by about 2.6%.Irradiation-induced segregation of elements is observed on the surface of irradiated samples.In addition,HE-RE2 Hf_(2)O_(7)demonstrates a more sluggish grain growth rate than Gd2 Hf_(2)O_(7)at 1200℃,suggesting better high-temperature stability.The linear thermal expansion coefficient of HE-RE2 Hf_(2)O_(7)is 10.7×10-6 K-1 at 298–1273 K.In general,it provides a new strategy for the design of the next advanced nuclear engineering materials. 展开更多
关键词 High-entropy ceramic Rare earth hafnate Ion irradiation amorphization resistance High temperature stability Nuclear safety
原文传递
Ultra-fast amorphization of crystalline alloys by ultrasonic vibrations 被引量:1
14
作者 Luyao Li Guo-Jian Lyu +10 位作者 Hongzhen Li Caitao Fan Wenxin Wen Hongji Lin Bo Huang Sajad Sohrabi Shuai Ren Xiong Liang Yun-Jiang Wang Jiang Ma Weihua Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第11期76-88,共13页
The amorphization of alloys is of both broad scientific interests and engineering significance.Despite considered as an efficient strategy to regulate and even achieve record-breaking properties of metallic materials,... The amorphization of alloys is of both broad scientific interests and engineering significance.Despite considered as an efficient strategy to regulate and even achieve record-breaking properties of metallic materials,a facile and rapid method to trigger solid-state amorphization is still being pursued.Here we report such a method to utilize ultrasonic vibration to trigger amorphization of intermetallic compound.The ultrasonic vibrations can cause tunable amorphization at room temperature and low stress(2 MPa)conveniently.Remarkably,the ultrasonic-induced amorphization could be achieved in 60 s,which is 360 times faster than the ball milling(2.16×10^(4) s)with the similar proportion of amorphization.The elements redistribute uniformly and rapidly via the activated short-circuit diffusion.Both experimental evidences and simulations show that the amorphous phase initiates and expands at nanograin boundaries,owing to the induction of lattice instability.This work provides a groundbreaking strategy for developing novel materials with tunable structures and properties. 展开更多
关键词 amorphization Ultrasonic vibration Lattice instability Elemental diffusion
原文传递
In Situ HRTEM Observation of Electron-Irradiation-Induced Amorphization and Dissolution of the E(Al_(18)Cr_2Mg_3) Phase in 7475 Al Alloy 被引量:6
15
作者 Mao-Hua Li Yan-Qing Yang +5 位作者 Bin Huang Xian Luo Wei Zhang Yan-Xia Chen Ming Han Ji-Gang Ru 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第2期147-151,共5页
Electron irradiation effects on phase stability of the E (Al18Cr2Mg3) phase have been investigated by high- angle annular dark-field scanning transmission electron microscopy and high-resolution transmission electro... Electron irradiation effects on phase stability of the E (Al18Cr2Mg3) phase have been investigated by high- angle annular dark-field scanning transmission electron microscopy and high-resolution transmission electron microscopy (HRTEM). The in situ HRTEM observations show that the Ala8Cr2Mg3 particles with different thickness undergo amorphization and dissolution under 300 keV electron irradiation at 25 ℃. The results indicate that the intermetallic compound Al18Cr2Mg3 is unstable under electron irradiation, and structural changes mainly depend on the thickness of particles. Amorphization in the thick particles is caused by a combination of chemical disordering and an increase in point defect concentration. Dissolution after amorphization in the thin particles is attributed to the diffusion of point defect towards the Al matrix. 展开更多
关键词 Intermetallic compound Al18Cr2Mg3 Irradiation effects amorphization DISSOLUTION
原文传递
Effect of Fluoride on the Ion-association of Calcium Phosphate and Crystallization of Hydroxyapatite
16
作者 宋昊月 CAI Meng +1 位作者 袁萍 邹朝勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期831-838,共8页
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t... Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride. 展开更多
关键词 CRYSTALLIZATION amorphous calcium phosphate HYDROXYAPATITE FLUORIDE
下载PDF
Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low‑Strain and Fast‑Charging Anode for Lithium‑Ion Batteries
17
作者 Zhenwei Li Meisheng Han +2 位作者 Peilun Yu Junsheng Lin Jie Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期333-351,共19页
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor... Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications. 展开更多
关键词 Amorphous Si nanodots Low-strain Fast-charging Lithium-ion batteries
下载PDF
Progress and prospects of Mg-based amorphous alloys in azo dye wastewater treatment
18
作者 Yanan Chen Fengchun Chen +5 位作者 Liang Li Chen Su Bo Song Hongju Zhang Shengfeng Guo Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期873-889,共17页
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem... Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice. 展开更多
关键词 Mg-based amorphous alloys Azo dyes DEALLOYING Surface modification Wastewater degradation.
下载PDF
Kinetic-boosted CO_(2) electroreduction to formate via synergistic electric-thermal field on hierarchical bismuth with amorphous layer
19
作者 Bing Yang Junyi Zeng +4 位作者 Zhenlin Zhang Lin Meng Donglin Shi Liang Chen Youju Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期233-243,I0007,共12页
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w... Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts. 展开更多
关键词 CO_(2) electroreduction Hierarchical bismuth Amorphous layer Electric-thermal field Kinetic-boosting
下载PDF
Anelasticity to plasticity transition in a model two-dimensional amorphous solid
20
作者 尚宝双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期143-147,共5页
Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s... Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids. 展开更多
关键词 amorphous solid deformation mechanism anelasticity to plasticity transition molecular dynamics simulation
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部