Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem...Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.展开更多
Fe-based amorphous alloys with high iron content of 76at%-80at%were synthesized in the Fe-Mo-Si-P-C-B alloy system by the single roller melt-spinning technique.The amorphous ribbons exhibit high Vickers microhardness ...Fe-based amorphous alloys with high iron content of 76at%-80at%were synthesized in the Fe-Mo-Si-P-C-B alloy system by the single roller melt-spinning technique.The amorphous ribbons exhibit high Vickers microhardness and good ductility,which can be indented and bent 180°without breaking.A number of shear bands could be observed around the indents and the bending traces.Studies on the magnetic properties of the amorphous alloys show that they possess high saturation magnetizations of 1.34-1.6 T,which increases with the increase of iron content.The core losses of these Fe-based amorphous alloys at various magnetic inductions were tested and found to be significantly dependent on their components.The Fe-Mo-Si-P-C-B amorphous alloys with excellent mechanical properties and soft magnetic properties have promising potential in functional applications.展开更多
The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denote...The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, A1, and Ti may dominate the reaction types. The orientation relationship between Y203 particles and A13Zr5 phase is also discussed.展开更多
Nanoporous silver(NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying(Cu_(50)Zr_(50))_(100-x)Agx(x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous soluti...Nanoporous silver(NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying(Cu_(50)Zr_(50))_(100-x)Agx(x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric(HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.展开更多
The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous struc...The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous structures, [FeFe11B3Si](Fe1-xZrx) was determined as the cluster formula of Fe-(B-Si)-Zr alloys. The glass formation and thermal stability of the serial alloys, namely, [FeFel^B3Si](Fel_xZrx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0), were studied by the combination of copper mold casting, X-ray diffraction, and differential thermal analysis techniques. The maxima of glass-forming ability and thermal stability were found to occur at the compositions of [FeFe11B3Si] (Fe0.6Zr0.4) and [FeFe11B3Si](Fe0.5Zr0.5). The alloys can be cast into amorphous rods with 1.5 ram diameter, and upon reheating, the amorphous alloys exhibit a large undercooled liquid span of 37 K. The saturation magnetization of the [FeFe11B3Si](Fe0.5Zr0.5) amorphous alloy was measured to be 1.4 T.展开更多
The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dy...The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.展开更多
L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is f...L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.展开更多
Zr_~65 Al_~10 Ni_~10 Cu_~15 , Zr_~52.5 Al_~10 Ni_~10 Cu_~15 Be_~12.5 and Zr_~52.5 Al_~10 Ni_~14.6 Cu_~17.9 Ti_5 bulk amorphous alloys were prepared by copper mould casting. The crystallization kinetics was measured by...Zr_~65 Al_~10 Ni_~10 Cu_~15 , Zr_~52.5 Al_~10 Ni_~10 Cu_~15 Be_~12.5 and Zr_~52.5 Al_~10 Ni_~14.6 Cu_~17.9 Ti_5 bulk amorphous alloys were prepared by copper mould casting. The crystallization kinetics was measured by differential scanning calorimeter(DSC) with different heating rates, and the activation energy was calculated using Kissinger equation. The relationship between thermal stability and rate constant of crystallization reaction is discussed on the view of crystallization kinetics, and the effect of small atom Beryllium on thermal stability of bulk amorphous alloys is also studied.展开更多
Shock wave and annealing crystallization of amorphous alloys FeSiB, FeMoSiB and FeCuNbSiB were studied by isothermal and non-isothermal DSC technique. It was found that the shock wave crystallization is very perfect, ...Shock wave and annealing crystallization of amorphous alloys FeSiB, FeMoSiB and FeCuNbSiB were studied by isothermal and non-isothermal DSC technique. It was found that the shock wave crystallization is very perfect, the fraction crystallized is very close to 100%, though the period of crystallization is very short, only about 10-4-10-6s. Their produced phases differ from the parent phase in structure and composition. The high velocity of the transformation is very difficult to explain by the diffusion theory of solid state phase transition.展开更多
Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni ...Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni alloys were studied. The results show that the GFA of Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) is improved successfully with the Y addition. The highest GFA appeares at x=6, while the reduced glass transition temperature (Trg) is 0.5225 and the supercooled liquid region(ΔTx) is 42.06 K; the position of the main diffraction halo is different for the alloys, and the maximum of the main diffraction halo of alloys with x=0, 1, 3 corresponds to the main peaks of a metastable fcc-Mg6Ni or fcc-Mg6Ni + Ni-Y intermetallic phases, and for the alloys with x=6, 10, it corresponds to Mg-Y and Ni-Y intermetallic phases; the micro-hardness of the alloys is improved with Y additions, and the highest micro-hardness is obtained at x=6 at.%, which is 960 MPa.展开更多
The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were d...The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were determined. Surface morphologies of samples after immersion in SBF at 37 ℃ for different times were observed under scanning electron microscope (SEM). Results show that the corrosion resistance of Mg-based alloys in SBF is improved with the addition of Nd element. The electrochemical properties indicate that microalloying Nd element to the alloys leads to an ennoblement in the open circuit potentials of the alloys and a decrease in the anodic current density in SBF, especially for the Mgee66-xZn30Ca4Ndx alloys with Nd content of 1.0at.%-1.5at.%. It was observed that the surface morphologies of the alloys immersed in SBF change with the Nd addition. A flake- like structure parallel to the alloy substrate formed on the surface of 1.0at.% Nd-containing alloy immersed in SBF for 7 days improves the corrosion resistance of the amorphous alloys by blocking the corrosion liquid from attacking the alloys.展开更多
The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission...The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.展开更多
Transmission electron microscopy (TEM) is usually used to identify the amorphicity. However, some artifacts may be introduced due to improper TEM foil preparation. In this paper, three Al-rich metallic glasses with ...Transmission electron microscopy (TEM) is usually used to identify the amorphicity. However, some artifacts may be introduced due to improper TEM foil preparation. In this paper, three Al-rich metallic glasses with and without a glass transition were selected for characterizing the effect of the electropolishing condition on the as-quenched structure during TEM specimen preparation. It is shown that the occurrence of the modulated bright-dark structure under TEM observation is closely sensitive to the electropolishing condition, which suggests us being careful about the possible artifacts induced by specimen preparation when examining amorphous alloys under TEM.展开更多
Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and...Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity ( i H c) increases while the saturation magnetization( σ s) and remanence ( σ r) decrease. The Curie temperature for the as cast Nd 60 Fe 30- x Al 10 Co x alloys increases from 451 K for x =0 to 468 K for x =10. Some precipitation of crystalline phases does not affect the hard magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.展开更多
Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x...Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x=0,1,2,3,4 at.%,TM=Nb,Y)alloys were designed to study the influence of Nb and Y addition on the plasticity.The amorphous samples were prepared using the vacuum melting and copper mold casting process.The microstructures,glass forming ability and mechanical properties of the alloys were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),depth-sensitive nanoindentation,and uniaxial compressive test.The plasticity of different bulk amorphous alloys was investigated by measuring the plastic deformation energy(PDE)during loading.The relationship between the PDE value and plasticity in bulk amorphous alloys was explored.Results show that Nb addition decreases the PDE value and promotes the generation of multiple shear bands,which significantly increases the fracture strength and plasticity,while the addition of Y element reduces the fracture strength and plastic strain of the alloy.展开更多
Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 ...Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.展开更多
A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explana...A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.展开更多
CuPNiSn amorphous alloys are good brazing materials at medium temperature for replacement of silver bearing brazing materials.The crystallization temperature,wettability,tensile strength of Cu-Cu joints and the micros...CuPNiSn amorphous alloys are good brazing materials at medium temperature for replacement of silver bearing brazing materials.The crystallization temperature,wettability,tensile strength of Cu-Cu joints and the microstructure of joints for three compositional series are reported.Some rare earth elements were added in two series.It has been found that grains are refined and the tensile strengths increase as in- creasing rare earth content.The results also show that the brittle fracture turns to plastic one for the joints with reducing amount of(Ni+Sn),and the tensile strength is increased.展开更多
A new type of Fe-based amorphous alloy containing rare earth element was prepared by melt spinning technique. The glass-forming ability (GFA),thermal stability and magnetic properties were investigated in the composit...A new type of Fe-based amorphous alloy containing rare earth element was prepared by melt spinning technique. The glass-forming ability (GFA),thermal stability and magnetic properties were investigated in the composition range of Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) ( x =0% to 6%,atom fraction). They exhibit the glass transition and supercooled liquid region before crystallization. The width of supercooled liquid region obtained for the series of Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) exceeds (40 K,) among which the maximum width for Fe_(70)Co_8Zr_5Nd_2B_(15) amorphous alloy reaches 61 K. Another main attraction is that the selected Fe-based amorphous alloys have good soft magnetic properties. The saturation magnetization ( J _s) is in the range of 1.10 to 1.37 T,and coercive force ( H _c) in the range of 2.28 to 8.15 A·m (-1) for Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) amorphous alloys. It is found that the saturation magnetization ( J _s) increases with the increment of the relative content of the Nd for the Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) alloys. The H _c values for the glasses with Nd content of 1%,2% and 3% are below 3 A·m (-1). The research indicates that Fe_(70)Co_8Zr_5Nd_2B_(15) amorphous alloy has good high GFA and good soft magnetic properties,of which the width of supercooled liquid region,J _s,and H _c are 61 K,1.25 T and 2.28 A·m (-1),respectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52071276)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2022NSCQ-MSX0440)the Fundamental Research Funds for the Central Universities(Grant No.SWUXDJH202313,SWU-KQ22083).
文摘Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.
基金supported by the China Postdoctoral Science Foundation(CPSF)(No.2007CB613900)the National Basic Research Priorities Program of China(No.2007CB613905)+1 种基金the Program for New Century Excellent Talents in the University,the Ministry of Education of China(No.50671050)the National Natural Science Foundation of China(Nos.50671050 and 50971073).
文摘Fe-based amorphous alloys with high iron content of 76at%-80at%were synthesized in the Fe-Mo-Si-P-C-B alloy system by the single roller melt-spinning technique.The amorphous ribbons exhibit high Vickers microhardness and good ductility,which can be indented and bent 180°without breaking.A number of shear bands could be observed around the indents and the bending traces.Studies on the magnetic properties of the amorphous alloys show that they possess high saturation magnetizations of 1.34-1.6 T,which increases with the increase of iron content.The core losses of these Fe-based amorphous alloys at various magnetic inductions were tested and found to be significantly dependent on their components.The Fe-Mo-Si-P-C-B amorphous alloys with excellent mechanical properties and soft magnetic properties have promising potential in functional applications.
文摘The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, A1, and Ti may dominate the reaction types. The orientation relationship between Y203 particles and A13Zr5 phase is also discussed.
基金financially supported by the National Natural Science Foundation of China(No.51101004)
文摘Nanoporous silver(NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying(Cu_(50)Zr_(50))_(100-x)Agx(x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric(HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.
基金financially supported by the Natural Science Foundation of China (Nos. 51131002, 51041011 and 50901012)the Fundamental Research Funds for the Central Universities (No. DUT12LAB08)the Scientific Research Foundation for the Returned Overseas Chinese Scholars by the Ministry of Education of China
文摘The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous structures, [FeFe11B3Si](Fe1-xZrx) was determined as the cluster formula of Fe-(B-Si)-Zr alloys. The glass formation and thermal stability of the serial alloys, namely, [FeFel^B3Si](Fel_xZrx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0), were studied by the combination of copper mold casting, X-ray diffraction, and differential thermal analysis techniques. The maxima of glass-forming ability and thermal stability were found to occur at the compositions of [FeFe11B3Si] (Fe0.6Zr0.4) and [FeFe11B3Si](Fe0.5Zr0.5). The alloys can be cast into amorphous rods with 1.5 ram diameter, and upon reheating, the amorphous alloys exhibit a large undercooled liquid span of 37 K. The saturation magnetization of the [FeFe11B3Si](Fe0.5Zr0.5) amorphous alloy was measured to be 1.4 T.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0300502)the Shenzhen Municipal Fundamental Science and Technology Research Program,China(Grant No.JCYJ20170815162201821)the Fundamental Research Funds for Central Universities,China(Grant No.31020170QD102)
文摘The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.
基金supported by the National Natural Science Foundation of China(Grant Nos.51971179 and 51971180)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0328)+3 种基金Shaanxi Provincial Natural Science Foundation,China(Grant No.2020JM-112)Guangdong Provincial Science and Technology Program,China(Grant No.2019B090905009)the Fundamental Research Funds for the Central Universities of China(Grant No.D5000210731)Shaanxi Provincial Key R&D Program,China(Grant No.2021KWZ-13)。
文摘L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
文摘Zr_~65 Al_~10 Ni_~10 Cu_~15 , Zr_~52.5 Al_~10 Ni_~10 Cu_~15 Be_~12.5 and Zr_~52.5 Al_~10 Ni_~14.6 Cu_~17.9 Ti_5 bulk amorphous alloys were prepared by copper mould casting. The crystallization kinetics was measured by differential scanning calorimeter(DSC) with different heating rates, and the activation energy was calculated using Kissinger equation. The relationship between thermal stability and rate constant of crystallization reaction is discussed on the view of crystallization kinetics, and the effect of small atom Beryllium on thermal stability of bulk amorphous alloys is also studied.
文摘Shock wave and annealing crystallization of amorphous alloys FeSiB, FeMoSiB and FeCuNbSiB were studied by isothermal and non-isothermal DSC technique. It was found that the shock wave crystallization is very perfect, the fraction crystallized is very close to 100%, though the period of crystallization is very short, only about 10-4-10-6s. Their produced phases differ from the parent phase in structure and composition. The high velocity of the transformation is very difficult to explain by the diffusion theory of solid state phase transition.
基金supported by the Award Fund for Outstanding Young Scientist in Shandong Province, China (No. BS2011CL004)
文摘Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni alloys were studied. The results show that the GFA of Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) is improved successfully with the Y addition. The highest GFA appeares at x=6, while the reduced glass transition temperature (Trg) is 0.5225 and the supercooled liquid region(ΔTx) is 42.06 K; the position of the main diffraction halo is different for the alloys, and the maximum of the main diffraction halo of alloys with x=0, 1, 3 corresponds to the main peaks of a metastable fcc-Mg6Ni or fcc-Mg6Ni + Ni-Y intermetallic phases, and for the alloys with x=6, 10, it corresponds to Mg-Y and Ni-Y intermetallic phases; the micro-hardness of the alloys is improved with Y additions, and the highest micro-hardness is obtained at x=6 at.%, which is 960 MPa.
基金financially supported by the"100 Talents Project"of Hebei Province,China(E2012100009)the Key Research Items in Science and Technology Support Program of Tianjin,China(12ZCZDGX46100)+1 种基金the Natural Science Foundation of Hebei Province,China(E2012202017)the National High Technology Research and Development Program(863 Program)of China(2013AA031002)
文摘The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were determined. Surface morphologies of samples after immersion in SBF at 37 ℃ for different times were observed under scanning electron microscope (SEM). Results show that the corrosion resistance of Mg-based alloys in SBF is improved with the addition of Nd element. The electrochemical properties indicate that microalloying Nd element to the alloys leads to an ennoblement in the open circuit potentials of the alloys and a decrease in the anodic current density in SBF, especially for the Mgee66-xZn30Ca4Ndx alloys with Nd content of 1.0at.%-1.5at.%. It was observed that the surface morphologies of the alloys immersed in SBF change with the Nd addition. A flake- like structure parallel to the alloy substrate formed on the surface of 1.0at.% Nd-containing alloy immersed in SBF for 7 days improves the corrosion resistance of the amorphous alloys by blocking the corrosion liquid from attacking the alloys.
基金the National Natural Science Foundation of China (50571052)
文摘The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 50271070, 50323009, 50471076).
文摘Transmission electron microscopy (TEM) is usually used to identify the amorphicity. However, some artifacts may be introduced due to improper TEM foil preparation. In this paper, three Al-rich metallic glasses with and without a glass transition were selected for characterizing the effect of the electropolishing condition on the as-quenched structure during TEM specimen preparation. It is shown that the occurrence of the modulated bright-dark structure under TEM observation is closely sensitive to the electropolishing condition, which suggests us being careful about the possible artifacts induced by specimen preparation when examining amorphous alloys under TEM.
文摘Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity ( i H c) increases while the saturation magnetization( σ s) and remanence ( σ r) decrease. The Curie temperature for the as cast Nd 60 Fe 30- x Al 10 Co x alloys increases from 451 K for x =0 to 468 K for x =10. Some precipitation of crystalline phases does not affect the hard magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.
基金supported by the National Natural Science Foundation of China(Grant Nos.:51434008,51671166,51471143)。
文摘Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x=0,1,2,3,4 at.%,TM=Nb,Y)alloys were designed to study the influence of Nb and Y addition on the plasticity.The amorphous samples were prepared using the vacuum melting and copper mold casting process.The microstructures,glass forming ability and mechanical properties of the alloys were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),depth-sensitive nanoindentation,and uniaxial compressive test.The plasticity of different bulk amorphous alloys was investigated by measuring the plastic deformation energy(PDE)during loading.The relationship between the PDE value and plasticity in bulk amorphous alloys was explored.Results show that Nb addition decreases the PDE value and promotes the generation of multiple shear bands,which significantly increases the fracture strength and plasticity,while the addition of Y element reduces the fracture strength and plastic strain of the alloy.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001 and 50631010).
文摘Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.
文摘A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.
文摘CuPNiSn amorphous alloys are good brazing materials at medium temperature for replacement of silver bearing brazing materials.The crystallization temperature,wettability,tensile strength of Cu-Cu joints and the microstructure of joints for three compositional series are reported.Some rare earth elements were added in two series.It has been found that grains are refined and the tensile strengths increase as in- creasing rare earth content.The results also show that the brittle fracture turns to plastic one for the joints with reducing amount of(Ni+Sn),and the tensile strength is increased.
文摘A new type of Fe-based amorphous alloy containing rare earth element was prepared by melt spinning technique. The glass-forming ability (GFA),thermal stability and magnetic properties were investigated in the composition range of Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) ( x =0% to 6%,atom fraction). They exhibit the glass transition and supercooled liquid region before crystallization. The width of supercooled liquid region obtained for the series of Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) exceeds (40 K,) among which the maximum width for Fe_(70)Co_8Zr_5Nd_2B_(15) amorphous alloy reaches 61 K. Another main attraction is that the selected Fe-based amorphous alloys have good soft magnetic properties. The saturation magnetization ( J _s) is in the range of 1.10 to 1.37 T,and coercive force ( H _c) in the range of 2.28 to 8.15 A·m (-1) for Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) amorphous alloys. It is found that the saturation magnetization ( J _s) increases with the increment of the relative content of the Nd for the Fe_(70)Co_8Zr_(7- x )Nd_ x B_(15) alloys. The H _c values for the glasses with Nd content of 1%,2% and 3% are below 3 A·m (-1). The research indicates that Fe_(70)Co_8Zr_5Nd_2B_(15) amorphous alloy has good high GFA and good soft magnetic properties,of which the width of supercooled liquid region,J _s,and H _c are 61 K,1.25 T and 2.28 A·m (-1),respectively.