A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial c...A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial cold stretching process was observed. The stretched sheets have a unique mechanical character that an increased tensile modulus is accompanied by an increased extensibility with increasing the draw ratio. Especially, a sharp increasing of the extensibility is observed for PETG/PC (70/30 wt%) blends at draw ratios between 8.2 and 20.0, where a nine times increase of extensibility is achieved. The mechanism of stretching-induced superior extensibility is investigated via micrograph observation, rheometry and calorimetric analysis. The observed superior extensibility could be tentatively explained by the bridging effect of the PC microfibrils on the crack development during tensile failure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.50533050,20874064 and 50873063)
文摘A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial cold stretching process was observed. The stretched sheets have a unique mechanical character that an increased tensile modulus is accompanied by an increased extensibility with increasing the draw ratio. Especially, a sharp increasing of the extensibility is observed for PETG/PC (70/30 wt%) blends at draw ratios between 8.2 and 20.0, where a nine times increase of extensibility is achieved. The mechanism of stretching-induced superior extensibility is investigated via micrograph observation, rheometry and calorimetric analysis. The observed superior extensibility could be tentatively explained by the bridging effect of the PC microfibrils on the crack development during tensile failure.