期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
QUANTUM-CHEMICAL MODIFICATIONS OF SURFACE:NEW METHODS FOR PROTECTING MATERIALS FROM CORROSION 被引量:1
1
作者 R. T. Malkhasyan (Scientific Production Enterprise "Atom" , Ministry of Industry and Trade, 3/1 Tevosyan, Yerevan, 375076, Armenia) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第6期415-418,共4页
A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of su... A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of surface by creating a film of amorphous iron on it. The presence of iron films with crystalline and amorphous phases, having the different Fermi levels, leads to formation of potential differences between them. This potential difference is opposite to the external electric field, resulting in decrease of anode current and increase of corrosion resistance. 展开更多
关键词 technical iron amorphous iron film corrosion and protection excited hydrogen molecule
下载PDF
Rapid decolorization of Acid Orange Ⅱ aqueous solution by amorphous zero-valent iron 被引量:6
2
作者 Changqin Zhang Zhengwang Zhu +1 位作者 Haifeng Zhang Zhuangqi Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第6期1021-1026,共6页
Some problems including low treatment capacity,agglomeration and clogging phenomena,and short working life,limit the application of pre-treatment methods involving zero-valent iron (ZVI).In this article,ZVI was froz... Some problems including low treatment capacity,agglomeration and clogging phenomena,and short working life,limit the application of pre-treatment methods involving zero-valent iron (ZVI).In this article,ZVI was frozen in an amorphous state through a melt-spinning technique,and the decolorization effect of amorphous ZVI on Acid Orange II solution was investigated under varied conditions of experimental variables such as reaction temperature,ribbon dosage,and initial pH.Batch experiments suggested that the decolorization rate was enhanced with the increase of reaction temperature and ribbon dosage,but decreased with increasing initial solution pH.Kinetic analyses indicated that the decolorization process followed a first order exponential kinetic model,and the surface-normalized decolorization rate could reach 2.09 L/(m^2 ·min) at room temperature,which was about ten times larger than any previously reported under similar conditions.Recycling experiments also proved that the ribbons could be reused at least four times without obvious decay of decolorization rate and efficiency.This study suggests a tremendous application potential for amorphous ZVI in remediation of groundwater or wastewater contaminated with azo dyes. 展开更多
关键词 amorphous zero-valent iron Acid Orange decolorization surface-normalized decolorization rate recycle amorphous zero-valent iron Acid Orange II DECOLORIZATION surface-normalized decolorization rate RECYCLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部