期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Kinetic-boosted CO_(2) electroreduction to formate via synergistic electric-thermal field on hierarchical bismuth with amorphous layer
1
作者 Bing Yang Junyi Zeng +4 位作者 Zhenlin Zhang Lin Meng Donglin Shi Liang Chen Youju Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期233-243,I0007,共12页
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w... Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts. 展开更多
关键词 CO_(2) electroreduction Hierarchical bismuth amorphous layer Electric-thermal field Kinetic-boosting
下载PDF
Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 ℃ 被引量:3
2
作者 郭艳青 黄锐 +3 位作者 宋捷 王祥 宋超 张奕雄 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期389-393,共5页
Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chem-ical vapor deposition (PECVD) technique using hydrogen-diluted Sill4 at 250 ℃. The dependence of the cr... Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chem-ical vapor deposition (PECVD) technique using hydrogen-diluted Sill4 at 250 ℃. The dependence of the crystallinity of the film on the hydrogen dilution ratio and the film thickness was investigated. Raman spectra show that the thickness of the initial amorphous incubation layer on silicon oxide gradually decreases with increasing hydrogen dilution ratio. High-resolution transmission electron microscopy reveals that the initial amorphous incubation layer can be completely eliminated at a hydrogen dilution ratio of 98%, which is lower than that needed for the growth of amorphous-layer-free nanocrystalline silicon using an excitation frequency of 13.56 MHz. More studies on the microstructure evolution of the initial amorphous incubation layer with hydrogen dilution ratios were performed using Fourier-transform infrared spectroscopy. It is suggested that the high hydrogen dilution, as well as the higher plasma excitation frequency, plays an important role in the formation of amorphous-layer-free nanocrystalline silicon films. 展开更多
关键词 nanocrystalline silicon amorphous incubation layer plasma enhanced chemical vapordeposition
下载PDF
The study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions 被引量:1
3
作者 陈永生 徐艳华 +3 位作者 谷锦华 卢景霄 杨仕娥 郜小勇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期567-571,共5页
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ... The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods. 展开更多
关键词 microcrystalline silicon thin film amorphous incubation layer
下载PDF
Cartilage Wear in Healthy and Osteoarthritis Joints
4
作者 Zenon Pawlak Raghuvir Pai 《Open Journal of Orthopedics》 2023年第2期55-61,共7页
This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant diff... This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study. 展开更多
关键词 Cartilage Surface Friction (Cartilage/Cartilage) Osteoarthritis (OA) Surface Active Phospholipids (SAPL)/or Surface amorphous layer (SAL) Deactivated Phospholipids WEAR
下载PDF
Rational construction of phosphate layer to optimize Cu-regulated Fe_(3)O_(4) as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries
5
作者 Shuhua Hao Yupeng Xing +4 位作者 Peiyu Hou Gang Zhao Jinzhao Huang Shipeng Qiu Xijin Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期133-141,共9页
Flexible aqueous energy storage devices with high security and flexibility are crucial for the progress of wearable energy storage.Particularly,aqueous rechargeable Ni-Fe batteries owning a large theoretical capacity,... Flexible aqueous energy storage devices with high security and flexibility are crucial for the progress of wearable energy storage.Particularly,aqueous rechargeable Ni-Fe batteries owning a large theoretical capacity,low cost and outstanding safety characteristics have emerged as a promising candidate for flexible aqueous energy storage devices.Herein,Cu-doped Fe_(3)O_(4)(CFO)with 3D coral structure was prepared by doping Cu^(2+) based on Fe_(3)O_(4)nanosheets(FO).Furthermore,the Fe-based anode material(CFPO)grown on carbon fibers was obtained by reconstructing the surface of CFO to form a low-crystallization shell which can enhance the ion transport.Excitingly,the newly developed CFPO electrode as an innovative anode material further exhibited a high capacity of 117.5 mAh g^(-1)(or 423 F g^(-1))at 1 A g^(-1).Then,the assembled aqueous Ni-Fe batteries with a high cell-voltage output of 1.6 V deliver a high capacity of 49.02 mAh g^(-1) at 1 A g^(-1) and retention ratio of 96.8%for capacitance after 10000 continuous cycles.What’s more,the aqueous quasi-solid-state batteries present a remarkable maximal energy density of 45.6 Wh kg^(-1) and a power density of 12 kW kg^(-1).This work provides an innovative and feasible way and optimization idea for the design of high-performance Fe-based anodes,and may promote the development of a new generation of flexible aqueous Ni-Fe batteries. 展开更多
关键词 Ni-Fe batteries High voltage window regulation High energy and power density Anode materials amorphous phosphate layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部