期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Innovative Approach for the Short-term Traffic Flow Prediction 被引量:2
1
作者 Xing Su Minghui Fan +2 位作者 Minjie Zhang Yi Liang Limin Guo 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2021年第5期519-532,共14页
Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty ... Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty years,many traffic flow prediction approaches have been proposed.However,some of these approaches use the regression based mechanisms,which cannot achieve accurate short-term traffic flow predication.While,other approaches use the neural network based mechanisms,which cannot work well with limited amount of training data.To this end,a light weight tensor-based traffic flow prediction approach is proposed,which can achieve efficient and accurate short-term traffic flow prediction with continuous traffic flow data in a limited period of time.In the proposed approach,first,a tensor-based traffic flow model is proposed to establish the multi-dimensional relationships for traffic flow values in continuous time intervals.Then,a CANDECOMP/PARAFAC decomposition based algorithm is employed to complete the missing values in the constructed tensor.Finally,the completed tensor can be directly used to achieve efficient and accurate traffic flow prediction.The experiments on the real dataset indicate that the proposed approach outperforms many current approaches on traffic flow prediction with limited amount of traffic flow data. 展开更多
关键词 Short-term traffic flow prediction TENSOR CP decomposition limited amount of data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部