In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-wa...Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.展开更多
In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy...In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.展开更多
This paper considers cooperative amplify-and-forwards (AF) two-way relay networks (TWRNs) with opportunistic relay selection (ORS) in two-wave with diffuse power (TWDP) fading channels. To investigate the syst...This paper considers cooperative amplify-and-forwards (AF) two-way relay networks (TWRNs) with opportunistic relay selection (ORS) in two-wave with diffuse power (TWDP) fading channels. To investigate the system performance, we first derive an easy-to-computer approximated expression for the exact outage probability to reduce computational cost. Furthermore, we presented compact expressions for the asymptotic outage probability and asymptotic symbol error rate, which characterizes two factors goveming the network performance at high signal-to-noise ratio (SNR) in terms of diversity order and coding gain. Additionally, based on the asymptotic outage probability, we determine the optimal power allocation solution between the relay and the sources to minimize the overall outage probability under the assumption that both the sources have identical transmit power. The correctness of the analysis is validated through Monte Carlo simulations. Our derived results can be applied to general operating scenarios with distinct TWDP fading parameters which encompass Rayleigh and Rician fading as special cases and arbitrary number of relays.展开更多
Two-way relay networks have received lots of attention, thanks to its ability to overcome the loss in the spectral efficiency due to half-duplex transmission. Asymptotic performance analysis can provide valuable insig...Two-way relay networks have received lots of attention, thanks to its ability to overcome the loss in the spectral efficiency due to half-duplex transmission. Asymptotic performance analysis can provide valuable insights in- to practical system designs. However, this is a gap in two-way relay network. In this paper, the asymptotic performance is studied for multi-branch dual-hop two-way amplify-and-forward (AF) relaying networks in independently but not necessarily identically distributed (i.n.i.d.) Nakagami-m fading channels, with arbitrary m 〉 5. The approximate prob- ability density function (PDF) of the instantaneous dual-hop link power at high SNR region is derived. Then we present the asymptotic outage probability expression, and analyze the diversity order and coding gain. Simulations are per- formed to verify the tightness of the presented analysis at medium and high SNR regions.展开更多
In this paper,we investigate the performance of the two-way Amplify-and-Forward(AF) relaying systems in an interference-limited Rayleigh fading environment.More specifically,assuming the presence of Rayleigh faded mul...In this paper,we investigate the performance of the two-way Amplify-and-Forward(AF) relaying systems in an interference-limited Rayleigh fading environment.More specifically,assuming the presence of Rayleigh faded multiple interferers at the AF relay and noisy sources,an approximate closed-form expression for the Overall Outage Probability(OOP) and an integral expression for the average Symbol Error Probability(SEP) are derived.The analysis results are verified through com-parison with the Monte Carlo simulation results.展开更多
Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization ma...Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization matrices at destinations are jointly optimised.To overcome the challenginglimitations introduced by individual powerconstraints,a Semi-Definite Relaxation(SDR)called element-wise relaxation is proposed,which can transform the original optimizationproblem into a standard convex optimizationproblem.In this research,two-way relaying isunderstood from a pure signal processing perspective which can potentially simplify thetheoretical analysis.Finally,simulation resultsare used for assessing the performance advantage of the proposed algorithm.展开更多
In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
An estimate-and-forward(EF) scheme for single-input single-output(SISO) and multiple-input multiple-output(MIMO) full-duplex two-way relay networks is proposed and analyzed. The relay estimates the received signal fro...An estimate-and-forward(EF) scheme for single-input single-output(SISO) and multiple-input multiple-output(MIMO) full-duplex two-way relay networks is proposed and analyzed. The relay estimates the received signal from two terminal nodes by a minimum mean squared error(MMSE) estimation and forwards a scaled version of the MMSE estimate to the destination. The proposed EF outperforms conventional amplify-and-forward(AF) and decode-and-forward(DF) across all signal-to-noise ratio(SNR) region. Because its computational complexity is high for relays with a large number of antennas(large MIMO) and/or high order constellations, an approximate EF scheme, called list EF, are thus proposed to reduce the computational complexity. The proposed list EF computes a candidate list for the MMSE estimate by using a sphere decoder, and it approaches the performance of the exact EF relay at a negligible performance loss. The proposed forwarding approach also could be used to other relay networks, such as half-duplex, one-way or massive MIMO relay networks.展开更多
Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mod...Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.展开更多
In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way A...In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.展开更多
An optimal cooperative beamforming for the amplify-and-forward (AF) MIMO two-way relay channels was designed. Supposing the channel state information (CSI) was perfectly known by the receiver and transmitter as well a...An optimal cooperative beamforming for the amplify-and-forward (AF) MIMO two-way relay channels was designed. Supposing the channel state information (CSI) was perfectly known by the receiver and transmitter as well as the relay, optimal beamforming vectors (matrices) of all nodes were jointly designed based on the criterion of minimizing the sum mean square errors (MSMSE). The analysis result shows that the performance effect of transmitting and receiving beamforming pairs is to maximize the receive signal-to-noise ratio (SNR) at two communication nodes, and the rank of the optimal relay beamforming matrix is no larger than two when there is only one data stream at each source node. A simplified algorithm was put forward to accomplish the design based on the analysis conclusions. Simulation results provide that the system performance, which is characterized in terms of bit error rates (BER), is significantly improved by cooperative beamforming, and the performance of the simplified method is not only very close to the optimal one but also with faster iteration speed and much lower computational complexity.展开更多
This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit po...This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.展开更多
A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary u...A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.展开更多
The large system analysis(LSA)has recently been shown to be a very useful tool for computing the average achievable rate.In this paper,we use LSA to derive the users’average achievable rate of multi-antenna two-way r...The large system analysis(LSA)has recently been shown to be a very useful tool for computing the average achievable rate.In this paper,we use LSA to derive the users’average achievable rate of multi-antenna two-way relay networks with interference alignment(IA),and we then derive the rate expressions under both equal power allocation and optimal power allocation.It is shown that the obtained closed-form rate expressions are functions of the average signal-to-noise ratio(SNR)for each data stream.Extensive simulation studies show that the average achievable rate expressions derived through LSA provide accurate estimates of the average achievable rate for two-way relay networks with interference alignment.展开更多
Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and t...Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and the useful signal spans all available spatial dimensions. In order to improve the performance of two-way relay network, we can use rank constrained rank minimization(RCRM) to solve the IA problem. This paper proposes left reweighted nuclear norm minimization-γalgorithm and selective coupling reweighted nuclear norm minimization algorithm to implement interference alignment in two-way relay networks. The left reweighted nuclear norm minimization-γ algorithm is based on reweighted nuclear norm minimization algorithm and has a novel γ choosing rule. The selective coupling reweighted nuclear norm minimization algorithm weighting methods choose according to singular value of interference matrixes. Simulation results show that the proposed algorithms considerably improve the sum rate performance and achieve the higher average achievable multiplexing gain in two-way relay interference networks.展开更多
To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the cl...To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.展开更多
In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from...In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.展开更多
In this paper, we investigate a joint beamforming and time switching(TS) design for an energy-constrained cognitive two-way relay(TWR) network. In the network, the energy-constrained secondary user(SU) relay employs T...In this paper, we investigate a joint beamforming and time switching(TS) design for an energy-constrained cognitive two-way relay(TWR) network. In the network, the energy-constrained secondary user(SU) relay employs TS protocol to harvest energy from the signals sent by the circuit-powered primary user(PU) transmitter, and then exploits the harvested energy to perform information forwarding. Our aim is to maximize the sum rate of SUs under the constraints of the data rate of PU, the energy harvesting and the transmit power of the SU relay. To determine the beamforming matrix and TS ratio, we decouple the original non-convex problem into two subproblems which can be solved by semidefinite relaxation and successive convex optimization methods. Furthermore, we derive closed form expressions of the optimal solutions for each subproblem, which facilitates the design of a suboptimal iterative algorithm to handle the original sum rate maximization problem. Simulation results are presented to illustrate the effectiveness and superior performance of the proposed joint design against other conventional schemes in the literature.展开更多
In this paper,beamforming parameters in multiple input multiple output(MIMO) two-way relay channels(TWRCs) are designed.We investigate three communicating scenarios,in which,the source nodes are all equipped with mult...In this paper,beamforming parameters in multiple input multiple output(MIMO) two-way relay channels(TWRCs) are designed.We investigate three communicating scenarios,in which,the source nodes are all equipped with multiple antennas.In the first scenario,one pair of source nodes are communicating with each other under the help of a single multi-antenna equipped relay.A centralized scheme is correspondingly developed where the optimal relay beamforming(RaB) is jointly designed with the transmit beamformings(TBs) and the receive beamformings(RcBs) at both source nodes to minimize the sum of mean square errors(SMSE).In the second scenario,one pair of users in the first scenario is extended to multi-pair of source nodes.We derive a general expression of the optimal RaB matrix of this scenario in the second scheme,and based on which,a RaB matrix is designed to cancel the inter-pair interference(IPI) and to minimize the intra-pair SMSE.At last,we consider a distributed scenario where multiple single-antenna equipped relays are helping the communication between one pair of source nodes.In the scheme associated with this scenario,beamformings are developed under relay total power constraint and relay individual power constraint,respectively.The simulation results reveal that beamformings at source and relay nodes significantly improve the performance in the sense of average bit error rate(BER).The proposed multi-pair scheme has made superior progress in BER performance because it not only can cancel the IPIs but also can balance the useful signal and the noise at each user.Moreover,in one-pair scenarios,the performance of the centralized scheme is better than the distributed one,but the latter is nevertheless much more practical.展开更多
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
基金supported by the National High Technology Research and Development Program of China(863 program) (No.2014AA01A705)partly supported by National Natural Science Foundation of China (No. 61271236)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20130875)Project of Key Laboratory of Wireless Communications of Jiangsu Province (No.NK214001)
文摘Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.
基金supported by the Natural Science Foundation of China under Grant No.62001517.
文摘In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.
基金supported by the Hi-Tech Research and Development Program of China (2014AA01A701)the National Natural Science Foundation of China (61072052)
文摘This paper considers cooperative amplify-and-forwards (AF) two-way relay networks (TWRNs) with opportunistic relay selection (ORS) in two-wave with diffuse power (TWDP) fading channels. To investigate the system performance, we first derive an easy-to-computer approximated expression for the exact outage probability to reduce computational cost. Furthermore, we presented compact expressions for the asymptotic outage probability and asymptotic symbol error rate, which characterizes two factors goveming the network performance at high signal-to-noise ratio (SNR) in terms of diversity order and coding gain. Additionally, based on the asymptotic outage probability, we determine the optimal power allocation solution between the relay and the sources to minimize the overall outage probability under the assumption that both the sources have identical transmit power. The correctness of the analysis is validated through Monte Carlo simulations. Our derived results can be applied to general operating scenarios with distinct TWDP fading parameters which encompass Rayleigh and Rician fading as special cases and arbitrary number of relays.
基金supported by the Major State Basic Research Development Program of China(973 Program No.2012CB316100)the National Natural Science Foundation of China(No.61032002)the Fundamental Research Funds for the Central Universities(No.2010XS21)
文摘Two-way relay networks have received lots of attention, thanks to its ability to overcome the loss in the spectral efficiency due to half-duplex transmission. Asymptotic performance analysis can provide valuable insights in- to practical system designs. However, this is a gap in two-way relay network. In this paper, the asymptotic performance is studied for multi-branch dual-hop two-way amplify-and-forward (AF) relaying networks in independently but not necessarily identically distributed (i.n.i.d.) Nakagami-m fading channels, with arbitrary m 〉 5. The approximate prob- ability density function (PDF) of the instantaneous dual-hop link power at high SNR region is derived. Then we present the asymptotic outage probability expression, and analyze the diversity order and coding gain. Simulations are per- formed to verify the tightness of the presented analysis at medium and high SNR regions.
基金Supported by the National Natural Science Foundation of China (No. 61001107)the Important National Science & Technology Specific Project (2010ZX03006-002-04)the Natural Science Foundation of Jiangsu Province (No.BK2010101)
文摘In this paper,we investigate the performance of the two-way Amplify-and-Forward(AF) relaying systems in an interference-limited Rayleigh fading environment.More specifically,assuming the presence of Rayleigh faded multiple interferers at the AF relay and noisy sources,an approximate closed-form expression for the Overall Outage Probability(OOP) and an integral expression for the average Symbol Error Probability(SEP) are derived.The analysis results are verified through com-parison with the Monte Carlo simulation results.
基金supported in part by EricssonNational Science and Technology Major Project under Grant No.2010ZX03003-003-03+2 种基金Sino-Swedish IMT-Advanced and Beyond Cooperative Program under Grant No.2008DFA11780National Natural Science Foundation of China under Grant No.61101130the Excellent Young Scholar Research Funding of Beijing Institute of Technology under Grant No.2013CX04038
文摘Linear transceiver designs are investigated for distributed two-way relaying networks,which aim at minimising the WeightedMean Square Error(WMSE) of data detections.The forwarding matrices at relays andequalization matrices at destinations are jointly optimised.To overcome the challenginglimitations introduced by individual powerconstraints,a Semi-Definite Relaxation(SDR)called element-wise relaxation is proposed,which can transform the original optimizationproblem into a standard convex optimizationproblem.In this research,two-way relaying isunderstood from a pure signal processing perspective which can potentially simplify thetheoretical analysis.Finally,simulation resultsare used for assessing the performance advantage of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金supported in part by the National Natural Science Foundation of China 61501461, 61471269, 61622101 and 61571020the National 973 Project under grant 2013CB336700+2 种基金the National 863 Project under grant SS2015AA011306the National Science Foundation under grant number CNS-1343189 and ECCS-1232305the Early Career Development Award of SKLMCCS (Y3S9021F34)
文摘An estimate-and-forward(EF) scheme for single-input single-output(SISO) and multiple-input multiple-output(MIMO) full-duplex two-way relay networks is proposed and analyzed. The relay estimates the received signal from two terminal nodes by a minimum mean squared error(MMSE) estimation and forwards a scaled version of the MMSE estimate to the destination. The proposed EF outperforms conventional amplify-and-forward(AF) and decode-and-forward(DF) across all signal-to-noise ratio(SNR) region. Because its computational complexity is high for relays with a large number of antennas(large MIMO) and/or high order constellations, an approximate EF scheme, called list EF, are thus proposed to reduce the computational complexity. The proposed list EF computes a candidate list for the MMSE estimate by using a sphere decoder, and it approaches the performance of the exact EF relay at a negligible performance loss. The proposed forwarding approach also could be used to other relay networks, such as half-duplex, one-way or massive MIMO relay networks.
基金supported by the key project of the National Natural Science Foundation of China (No.61431001)5G research program of China Mobile Research Institute (Grant No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.
基金Project(IRT0852) supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(2012CB316100) supported by the National Basic Research Program of China+2 种基金Projects(61101144,61101145) supported by the National Natural Science Foundation of ChinaProject(B08038) supported by the "111" Project,ChinaProject(K50510010017) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.
基金Project(60902092)supported by the National Natural Science Foundation of China
文摘An optimal cooperative beamforming for the amplify-and-forward (AF) MIMO two-way relay channels was designed. Supposing the channel state information (CSI) was perfectly known by the receiver and transmitter as well as the relay, optimal beamforming vectors (matrices) of all nodes were jointly designed based on the criterion of minimizing the sum mean square errors (MSMSE). The analysis result shows that the performance effect of transmitting and receiving beamforming pairs is to maximize the receive signal-to-noise ratio (SNR) at two communication nodes, and the rank of the optimal relay beamforming matrix is no larger than two when there is only one data stream at each source node. A simplified algorithm was put forward to accomplish the design based on the analysis conclusions. Simulation results provide that the system performance, which is characterized in terms of bit error rates (BER), is significantly improved by cooperative beamforming, and the performance of the simplified method is not only very close to the optimal one but also with faster iteration speed and much lower computational complexity.
基金National Natural Science Foundation of China(No.61461024)
文摘This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
基金supported by the National Natural Science Foundation of China (61250005)Jiangxi Postdoctoral Science Foundation(2013KY07)
文摘A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.
基金supported by the National Natural Science Foundation of China(61671253,61971241,61631020 and 91738201)the Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions(16KJA510004)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20171446)the open research fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology of Nanjing University of Posts and Telecommunications(KFJJ20170305)。
文摘The large system analysis(LSA)has recently been shown to be a very useful tool for computing the average achievable rate.In this paper,we use LSA to derive the users’average achievable rate of multi-antenna two-way relay networks with interference alignment(IA),and we then derive the rate expressions under both equal power allocation and optimal power allocation.It is shown that the obtained closed-form rate expressions are functions of the average signal-to-noise ratio(SNR)for each data stream.Extensive simulation studies show that the average achievable rate expressions derived through LSA provide accurate estimates of the average achievable rate for two-way relay networks with interference alignment.
基金supported by the National Science Foundation of China (NO.61271240, 61671253)
文摘Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and the useful signal spans all available spatial dimensions. In order to improve the performance of two-way relay network, we can use rank constrained rank minimization(RCRM) to solve the IA problem. This paper proposes left reweighted nuclear norm minimization-γalgorithm and selective coupling reweighted nuclear norm minimization algorithm to implement interference alignment in two-way relay networks. The left reweighted nuclear norm minimization-γ algorithm is based on reweighted nuclear norm minimization algorithm and has a novel γ choosing rule. The selective coupling reweighted nuclear norm minimization algorithm weighting methods choose according to singular value of interference matrixes. Simulation results show that the proposed algorithms considerably improve the sum rate performance and achieve the higher average achievable multiplexing gain in two-way relay interference networks.
文摘To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.
基金supported by China National S&T Major Project 2013ZX03003002-003National Natural Science Foundation of China under Grant No. 61176027, No.61421001111 Project of China under Grant B14010
文摘In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.
基金National Natural Science Foundation of China (61871241, 61771263)Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18-2422)+3 种基金Six Categories Talent Peak of Jiangsu Province (KTHY-039)Science and Technology Program of Nantong (JC2018127, JC2018129, GY22017013)Stereoscopic Coverage Communication Network Verification Platform for China Sea (PCL2018KP002)Open Research Fund of Nantong University-Nantong Joint Research Center for Intelligent Information Technology (KFKT2017A05, KFKT2017B02)
文摘In this paper, we investigate a joint beamforming and time switching(TS) design for an energy-constrained cognitive two-way relay(TWR) network. In the network, the energy-constrained secondary user(SU) relay employs TS protocol to harvest energy from the signals sent by the circuit-powered primary user(PU) transmitter, and then exploits the harvested energy to perform information forwarding. Our aim is to maximize the sum rate of SUs under the constraints of the data rate of PU, the energy harvesting and the transmit power of the SU relay. To determine the beamforming matrix and TS ratio, we decouple the original non-convex problem into two subproblems which can be solved by semidefinite relaxation and successive convex optimization methods. Furthermore, we derive closed form expressions of the optimal solutions for each subproblem, which facilitates the design of a suboptimal iterative algorithm to handle the original sum rate maximization problem. Simulation results are presented to illustrate the effectiveness and superior performance of the proposed joint design against other conventional schemes in the literature.
基金Sponsored by the China Scholarship Council (CSC) and the Australian Research Council (ARC) Discovery Projects (Grant No. DP1095650)
文摘In this paper,beamforming parameters in multiple input multiple output(MIMO) two-way relay channels(TWRCs) are designed.We investigate three communicating scenarios,in which,the source nodes are all equipped with multiple antennas.In the first scenario,one pair of source nodes are communicating with each other under the help of a single multi-antenna equipped relay.A centralized scheme is correspondingly developed where the optimal relay beamforming(RaB) is jointly designed with the transmit beamformings(TBs) and the receive beamformings(RcBs) at both source nodes to minimize the sum of mean square errors(SMSE).In the second scenario,one pair of users in the first scenario is extended to multi-pair of source nodes.We derive a general expression of the optimal RaB matrix of this scenario in the second scheme,and based on which,a RaB matrix is designed to cancel the inter-pair interference(IPI) and to minimize the intra-pair SMSE.At last,we consider a distributed scenario where multiple single-antenna equipped relays are helping the communication between one pair of source nodes.In the scheme associated with this scenario,beamformings are developed under relay total power constraint and relay individual power constraint,respectively.The simulation results reveal that beamformings at source and relay nodes significantly improve the performance in the sense of average bit error rate(BER).The proposed multi-pair scheme has made superior progress in BER performance because it not only can cancel the IPIs but also can balance the useful signal and the noise at each user.Moreover,in one-pair scenarios,the performance of the centralized scheme is better than the distributed one,but the latter is nevertheless much more practical.