Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Al...Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg- radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment.展开更多
Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensi...Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.展开更多
BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mech...BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.展开更多
BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte acti...BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.展开更多
Three-month-old Alzheimer's disease model transgenic mice were immunized with Aβ1-42, Plp-Adenovirus [Ad]-X-CMV-(Aβ3-10)lo-CpG [AdCpG-(Aβ3-10)1] or AdCpG virus fluid via na- sal mucosal inhalation, respectivel...Three-month-old Alzheimer's disease model transgenic mice were immunized with Aβ1-42, Plp-Adenovirus [Ad]-X-CMV-(Aβ3-10)lo-CpG [AdCpG-(Aβ3-10)1] or AdCpG virus fluid via na- sal mucosal inhalation, respectively. ELISA analysis of serum showed Aβ42 antibody titers were significantly increased in mice immunized with Aβ1-42 and AdCpG-(Aβ3-10)10. Concanavalin A and AdCpG-(Aβ3-10)10 stimulation significantly increased the number of proliferating spleen cells cultured from AdCpG(Aβ3-10)Io and Aβ42 groups compared with the control group. In the AdCp- G(Aβ3-10)10 group, levels of interleukin (IL)-4 and IL-10 were increased, while those of IL-2 and interferon-y were decreased. In the A[342 group, levels of IL-4, IL-10, IL-2 and interferon-y were all increased. Experimental findings indicate that AdCpG-(Aβ3-10)10 vaccine can produce strong T helper 2 (Th2) humoral immune responses in addition to the production of Aβ42 antibody. The cellular immunologic response was weak and avoided Aβ1-42-mediated cytotoxicity.展开更多
Alzheimer’s disease(AD)is the most common progressive neurodegenerative disorder.It is often lethal and currently lacks a satisfactory therapy.The disease has a specific neuro-pathological profile:accumulation of pro...Alzheimer’s disease(AD)is the most common progressive neurodegenerative disorder.It is often lethal and currently lacks a satisfactory therapy.The disease has a specific neuro-pathological profile:accumulation of proteinaceous deposits in the brain–amyloid plaques(containingβ-amyloid peptides)and neurofibrillary tangles which are accumulation of a profusion of long stringy tangles of proteins called tau.Between the two highly recognized AD hypotheses,amyloid beta(Aβ)peptide aggregation and accumulation play a significant role and are considered as an important mechanism of AD pathology.Aβis a proteolytic product of amyloid precursor protein and genetic studies supported the relevance of Aβin AD pathogenesis.A large number of small molecules were studied for their ability to inhibit Aβ-aggregation in oligomer form or after fibrillization.However,the protein-misfolding process has certain setbacks which are inevitable due to the different morphology of protein.In recent years,it has been demonstrated that tau also plays a central role in pathogenesis of this disease.Moreover,abnormal post-translational modifications of tau,in particular,increases in acetylation at specific sites likely contribute to the toxicity of tau.Although it is evident that tau with these aberrant post-translational modifications likely facilitates neurodegeneration,the precise cellular mechanisms by which tau compromises neuronal function remain unknown.In addition,much remains to be learned about new interventions that might be developed to prevent or reduce the negative impact of tau posttranslational modifications-related damage.This review article addresses the key roles of amyloid beta and tau protein in AD as well as the possible therapeutic agents that can reduce the toxic levels of both the proteins,and thus providing beneficial effect for the AD patients.展开更多
Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid ...Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-3s for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (〉 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.展开更多
Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ...Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ neurotoxicity in animal models of Alzheimer's disease. However, the protective effect of SIRT1 on astrocytes is still under investigation. This study established a time point model for the clearance of Aβ in primary astrocytes. Results showed that 12 hours of culture was sufficient for endocytosis of oligomeric Aβ, and 36 hours sufficient for effective degradation. Immunofluorescence demonstrated that Aβ degradation in primary astrocytes relies on lysosome function. Enzymatic agonists or SIRT1 inhibitors were used to stimulate cells over a concentration gradient. Aβ was co-cultured for 36 hours in medium. Western blot assay results under different conditions revealed that SIRT1 relies on its deacetylase activity to promote intracellular Aβ degradation. The experiment further screened SIRT1 using quantitative proteomics to investigate downstream, differentially expressed proteins in the Aβ degradation pathway and selected the ones related to enzyme activity of SIRT1. Most of the differentially expressed proteins detected are close to the primary astrocyte lysosomal pathway. Immunofluorescence staining demonstrated that SIRT1 relies on its deacetylase activity to upregulate lysosome number in primary astrocytes. Taken together, these findings confirm that SIRT1 relies on its deacetylase activity to upregulate lysosome number, thereby facilitating oligomeric Aβ degradation in primary astrocytes.展开更多
Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo ag...Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.展开更多
Objective: To examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment25-35 (Aβ25-35)-induced PC12 cells cytotoxicity, and to further explore its mechanism. Methods: Experimental...Objective: To examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment25-35 (Aβ25-35)-induced PC12 cells cytotoxicity, and to further explore its mechanism. Methods: Experimental PC12 cells were divided into the Aβ group (treated by Aβ25-35 100μmol/L), the blank group (untreated), the positive control group (treated by Vit E 100 μmol/L after induction) and the ECR treated groups (treated by ECR with different concentrations of 1, 50 and 100 μmol/L). The damaged and survival condition of PC12 cells in various groups was monitored by lactate dehydrogenase (LDH) release and MTT assay. The content of malondialdehyde (MDA) was measured by fluorometric assay to indicate the lipid peroxidation. And the antioxidant enzymes activities in PC12 cells, including superoxide dismutases(SOD), catalase (CAT) and glutathione peroxidase(GSH-Px), were detected respectively. Results: After PC12 cells were treated with Aβ25-35 (100 μmol/L) for 24 hrs, they revealed a great decrease in MTT absorbance and activity of antioxidant enzymes, including SOD, CAT and GSH-Px as well as a significant increase of LDH activity and MDA content in PC12 cells (P〈0.01). When the cells was pretreated with 1-100 μmol/L ECR for 24 hrs before Aβ25-35 treatment, the above-mentioned cytotoxic effect of Aβ25-35 could be significantly attenuated dose-dependently, for ECR 50 μmol/L, P〈0.05 and for ECR 100 μmol/L, P〈0.01. Moreover, ECR also showed significant inhibition on the Aβ25-35 induced decrease of SOD and GSH-Px activity, but not on that of CAT. Conclusion: ECR could protect PC12 cells from cytotoxicity of Aβ25-35, and the protective mechanism might be related to the increase of SOD and GSH-Px activities and the decrease of MDA resulting from the ECR-pretreatment.展开更多
BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, an...BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.展开更多
The accumulation of amyloid β peptide<sub>1-42</sub> (Aβ<sub>1-42</sub>) masses in the brains of Alzheimer’s Disease (AD) patients is associated with neuronal loss and memory deficits. We ha...The accumulation of amyloid β peptide<sub>1-42</sub> (Aβ<sub>1-42</sub>) masses in the brains of Alzheimer’s Disease (AD) patients is associated with neuronal loss and memory deficits. We have previously reported that oral administration of docosahexaenoic acid (DHA, C22:6, n-3) significantly decreases Aβ burden in the brains of AD model rats and that direct in vitro incubation of DHA with Aβ<sub>1-42</sub> curbs the progression of amyloid fibrillation. In the present in silico study, we investigated whether DHA computationally binds with amyloid peptides. The NMR solution structures of Aβ<sub>1-42</sub> were downloaded from the Protein Data Bank (PDB IDs: 1Z0Q and 2BEG). The binding of DHA to Aβ peptides was assessed by molecular docking using both a flexible and rigid docking system. Thioflavin T (ThT) was used as positive control. The chemical structures of ThT and DHA were modeled and converted to the PDB format using PRODRUG. Drug-like properties of DHA were evaluated by ADME (Absorption, Distribution, Metabolism, and Excretion). DHA was found to successfully dock with Aβ<sub>1-42</sub>. Computational analyses of the binding of DHA to Aβ<sub>1-42</sub>, as evaluated by docking studies, further corroborated the inhibitory effect of DHA on in vitro Aβ<sub>1-42</sub> fibrillogenesis and might explain the in vivo reduction of amyloid burden observed in the brains of DHA-administered AD model rats demonstrated in our previous study. These computational data suggest the potential utility of DHA as a preventive medication in Aβ-induced neurodegenerative diseases, including AD.展开更多
High levels of the neurotoxic beta-amyloid protein (A<em>β</em>) in patients with Alzheimer’s disease present a significant therapeutic target, although the protein is unlikely to be the sole instigator ...High levels of the neurotoxic beta-amyloid protein (A<em>β</em>) in patients with Alzheimer’s disease present a significant therapeutic target, although the protein is unlikely to be the sole instigator of this condition. A<em>β</em> initiates cell receptor and synapse dysfunction, and causes mitochondrial damage within neurons. Neurotransmitters and various small molecular weight compounds ameliorate the effects of A<em>β</em> on cell membranes. This study uses a molecular modeling technique to compare the structures of A<em>β</em>25-35 and compounds known to antagonize properties of the polypeptide. Compounds provide good fits to the peptide amino acid residues, revealing planarity in their linear structures and fitting points. Compounds and polypeptide share relative molecular similarity, affinity for receptors and apoptosis modulating properties indicative of their potential for competition at neuron membrane sites. The therapeutic targeting of A<em>β</em> by small molecular weight compounds may benefit from a multi-drug approach.展开更多
The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and...The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 - 35) on 17β estradiol (E2) treated aging female rat brain synaptosomes of different age groups, by assaying Na+ - K+ ATPase enzyme activity. An in vitro incubation of isolated synaptosomes with Aβ (25 - 35) showed toxic effects while NKB showed stimulating effect on the Na+ - K+ ATPase activity, and the combined NKB + Aβ (25 - 35) incubations showed a partial effect as compared to the Aβ (25 - 35) alone. To understand whether E2 affects the expression of Na+ - K+ ATPase molecules, we examined the expression of Na+ - K+ ATPase subunit α1 and β2 in E2 treated aging female rat brain synaptosomes. The enzyme was quantified by SDS PAGE in control and E2 treated rat brain. We observed that the expression of α1 and β2 Na+ - K+ ATPase molecules increased and reversed to a normal level in E2 treated synaptosomes. These results confirmed that E2 increased turnover of Na+ - K+ ATPase molecules in aging rat brain. The present findings also suggest a possible role of NKB with E2 in the age related changes in the brain.展开更多
The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stres...The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stress leading to neurodegeneration associated with excitotoxicity. In the present study, we observed the effect of tachykinin neuropeptide Neurokinin B (NKB) and amyloid beta fragment Aβ (25 -?35) on the activity of Acetylcholine esterase (AChE) and Lipid peroxidation (LPO) in brains of 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. An in-vitro incubation of E2 treated brain synaptosomes with Aβ (25 -?35) showed toxic effects on all the parameters. The treatment of NKB and combined NKB and Aβ (25 -?35) increased the AChE enzyme activity and decreased the level of LPO in E2 treated aging rats. The treatment of NKB and combined NKB and Aβ (25 - 35) in a concentration dependent manner reversed the effects of aging and Aβ (25 -?35) on AChE and LPO. The present finding suggests that E2 along with NKB reverse aging and Aβ (25 -?35) induced toxicity as well as AChE and LPO levels. The results of the current study showed a possible beneficial role of NKB with E2 inthe age related neurological diseases.展开更多
Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of e...Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to determine the effect of tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 -?35) on 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. Aging brain functions were assayed by measuring the activities of antioxidant enzymes—superoxide dismutase (SOD) and monoamine oxidase (MAO) with neuropeptides. An in-vitro incubation of Aβ (25 -?35) in E2 treated brain synaptosomes showed toxic effects on all the parameters. However, NKB and NKB combined with Aβ (25 35) showed stimulating effects in E2 treated rat brain synaptosomes. In the present study, an increase in activity of SOD and decrease in the level of MAO, in the presence of NKB and combined NKB and Aβ in E2 treated brain synaptosomes of aging rats. This study elucidates that treatment of NKB and Aβ with E2 incombination exerts more protective influence than their individual application, against excitotoxicity in age related changes.展开更多
基金supported by a grant from Projects of High-tech Industrialization of Guangdong Province of China,No.2011B010500004a grant from National Financial Major Project of China
文摘Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg- radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment.
基金supported by grants from Hebei Provincial Science and Technology Bureau,No.08276101D-21
文摘Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
基金the National Natural Science Foundation of China, No. 30973779the National Special Planning Project for Traditional Chinese Medicine of China, No.02-03LP41the Key Program of Scientific Planning of Guangdong Province, No. 2006B35630007
文摘BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.
基金Supported by: the National Natural Science Foundation of China, No. 30770737
文摘BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.
基金supported by the National Natural Science Foundation of China,No.30471927
文摘Three-month-old Alzheimer's disease model transgenic mice were immunized with Aβ1-42, Plp-Adenovirus [Ad]-X-CMV-(Aβ3-10)lo-CpG [AdCpG-(Aβ3-10)1] or AdCpG virus fluid via na- sal mucosal inhalation, respectively. ELISA analysis of serum showed Aβ42 antibody titers were significantly increased in mice immunized with Aβ1-42 and AdCpG-(Aβ3-10)10. Concanavalin A and AdCpG-(Aβ3-10)10 stimulation significantly increased the number of proliferating spleen cells cultured from AdCpG(Aβ3-10)Io and Aβ42 groups compared with the control group. In the AdCp- G(Aβ3-10)10 group, levels of interleukin (IL)-4 and IL-10 were increased, while those of IL-2 and interferon-y were decreased. In the A[342 group, levels of IL-4, IL-10, IL-2 and interferon-y were all increased. Experimental findings indicate that AdCpG-(Aβ3-10)10 vaccine can produce strong T helper 2 (Th2) humoral immune responses in addition to the production of Aβ42 antibody. The cellular immunologic response was weak and avoided Aβ1-42-mediated cytotoxicity.
基金Guha S wishes to thank UR PDA Career Enhancement Award 2020 for covering the subscription fee of bio-render and other bureaucratic cost.Subramaniyam R wishes to thank DST-inspire program for the research grant(No.DST/INSPIRE/04/2015/001945).
文摘Alzheimer’s disease(AD)is the most common progressive neurodegenerative disorder.It is often lethal and currently lacks a satisfactory therapy.The disease has a specific neuro-pathological profile:accumulation of proteinaceous deposits in the brain–amyloid plaques(containingβ-amyloid peptides)and neurofibrillary tangles which are accumulation of a profusion of long stringy tangles of proteins called tau.Between the two highly recognized AD hypotheses,amyloid beta(Aβ)peptide aggregation and accumulation play a significant role and are considered as an important mechanism of AD pathology.Aβis a proteolytic product of amyloid precursor protein and genetic studies supported the relevance of Aβin AD pathogenesis.A large number of small molecules were studied for their ability to inhibit Aβ-aggregation in oligomer form or after fibrillization.However,the protein-misfolding process has certain setbacks which are inevitable due to the different morphology of protein.In recent years,it has been demonstrated that tau also plays a central role in pathogenesis of this disease.Moreover,abnormal post-translational modifications of tau,in particular,increases in acetylation at specific sites likely contribute to the toxicity of tau.Although it is evident that tau with these aberrant post-translational modifications likely facilitates neurodegeneration,the precise cellular mechanisms by which tau compromises neuronal function remain unknown.In addition,much remains to be learned about new interventions that might be developed to prevent or reduce the negative impact of tau posttranslational modifications-related damage.This review article addresses the key roles of amyloid beta and tau protein in AD as well as the possible therapeutic agents that can reduce the toxic levels of both the proteins,and thus providing beneficial effect for the AD patients.
文摘Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-3s for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (〉 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.
基金supported by the National Natural Science Foundation of China,No.31670832,31470807,31270872a grant from the National Key Research and Development Program of China,No.2016YFA0500301a grant from the State Key Laboratory of Protein and Plant Gene Research,College of Life Sciences,Peking University,China
文摘Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ neurotoxicity in animal models of Alzheimer's disease. However, the protective effect of SIRT1 on astrocytes is still under investigation. This study established a time point model for the clearance of Aβ in primary astrocytes. Results showed that 12 hours of culture was sufficient for endocytosis of oligomeric Aβ, and 36 hours sufficient for effective degradation. Immunofluorescence demonstrated that Aβ degradation in primary astrocytes relies on lysosome function. Enzymatic agonists or SIRT1 inhibitors were used to stimulate cells over a concentration gradient. Aβ was co-cultured for 36 hours in medium. Western blot assay results under different conditions revealed that SIRT1 relies on its deacetylase activity to promote intracellular Aβ degradation. The experiment further screened SIRT1 using quantitative proteomics to investigate downstream, differentially expressed proteins in the Aβ degradation pathway and selected the ones related to enzyme activity of SIRT1. Most of the differentially expressed proteins detected are close to the primary astrocyte lysosomal pathway. Immunofluorescence staining demonstrated that SIRT1 relies on its deacetylase activity to upregulate lysosome number in primary astrocytes. Taken together, these findings confirm that SIRT1 relies on its deacetylase activity to upregulate lysosome number, thereby facilitating oligomeric Aβ degradation in primary astrocytes.
基金financially supported by the National Natural Science Foundation of China,No.81573771the Natural Science Foundation of Jiangsu Province of China,No.BK20151599
文摘Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.
基金Supported by Governor Talent Foundation of GuizhouProvince (No .2001016)
文摘Objective: To examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment25-35 (Aβ25-35)-induced PC12 cells cytotoxicity, and to further explore its mechanism. Methods: Experimental PC12 cells were divided into the Aβ group (treated by Aβ25-35 100μmol/L), the blank group (untreated), the positive control group (treated by Vit E 100 μmol/L after induction) and the ECR treated groups (treated by ECR with different concentrations of 1, 50 and 100 μmol/L). The damaged and survival condition of PC12 cells in various groups was monitored by lactate dehydrogenase (LDH) release and MTT assay. The content of malondialdehyde (MDA) was measured by fluorometric assay to indicate the lipid peroxidation. And the antioxidant enzymes activities in PC12 cells, including superoxide dismutases(SOD), catalase (CAT) and glutathione peroxidase(GSH-Px), were detected respectively. Results: After PC12 cells were treated with Aβ25-35 (100 μmol/L) for 24 hrs, they revealed a great decrease in MTT absorbance and activity of antioxidant enzymes, including SOD, CAT and GSH-Px as well as a significant increase of LDH activity and MDA content in PC12 cells (P〈0.01). When the cells was pretreated with 1-100 μmol/L ECR for 24 hrs before Aβ25-35 treatment, the above-mentioned cytotoxic effect of Aβ25-35 could be significantly attenuated dose-dependently, for ECR 50 μmol/L, P〈0.05 and for ECR 100 μmol/L, P〈0.01. Moreover, ECR also showed significant inhibition on the Aβ25-35 induced decrease of SOD and GSH-Px activity, but not on that of CAT. Conclusion: ECR could protect PC12 cells from cytotoxicity of Aβ25-35, and the protective mechanism might be related to the increase of SOD and GSH-Px activities and the decrease of MDA resulting from the ECR-pretreatment.
基金Supported by:Scientific and Technological Foundation of the National Administration of Traditional Chinese Medicine of China,No.02-03LP41the Scientific and Technological Key Project of Guangdong Province,No. 2006B35630007
文摘BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.
文摘The accumulation of amyloid β peptide<sub>1-42</sub> (Aβ<sub>1-42</sub>) masses in the brains of Alzheimer’s Disease (AD) patients is associated with neuronal loss and memory deficits. We have previously reported that oral administration of docosahexaenoic acid (DHA, C22:6, n-3) significantly decreases Aβ burden in the brains of AD model rats and that direct in vitro incubation of DHA with Aβ<sub>1-42</sub> curbs the progression of amyloid fibrillation. In the present in silico study, we investigated whether DHA computationally binds with amyloid peptides. The NMR solution structures of Aβ<sub>1-42</sub> were downloaded from the Protein Data Bank (PDB IDs: 1Z0Q and 2BEG). The binding of DHA to Aβ peptides was assessed by molecular docking using both a flexible and rigid docking system. Thioflavin T (ThT) was used as positive control. The chemical structures of ThT and DHA were modeled and converted to the PDB format using PRODRUG. Drug-like properties of DHA were evaluated by ADME (Absorption, Distribution, Metabolism, and Excretion). DHA was found to successfully dock with Aβ<sub>1-42</sub>. Computational analyses of the binding of DHA to Aβ<sub>1-42</sub>, as evaluated by docking studies, further corroborated the inhibitory effect of DHA on in vitro Aβ<sub>1-42</sub> fibrillogenesis and might explain the in vivo reduction of amyloid burden observed in the brains of DHA-administered AD model rats demonstrated in our previous study. These computational data suggest the potential utility of DHA as a preventive medication in Aβ-induced neurodegenerative diseases, including AD.
文摘High levels of the neurotoxic beta-amyloid protein (A<em>β</em>) in patients with Alzheimer’s disease present a significant therapeutic target, although the protein is unlikely to be the sole instigator of this condition. A<em>β</em> initiates cell receptor and synapse dysfunction, and causes mitochondrial damage within neurons. Neurotransmitters and various small molecular weight compounds ameliorate the effects of A<em>β</em> on cell membranes. This study uses a molecular modeling technique to compare the structures of A<em>β</em>25-35 and compounds known to antagonize properties of the polypeptide. Compounds provide good fits to the peptide amino acid residues, revealing planarity in their linear structures and fitting points. Compounds and polypeptide share relative molecular similarity, affinity for receptors and apoptosis modulating properties indicative of their potential for competition at neuron membrane sites. The therapeutic targeting of A<em>β</em> by small molecular weight compounds may benefit from a multi-drug approach.
文摘The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 - 35) on 17β estradiol (E2) treated aging female rat brain synaptosomes of different age groups, by assaying Na+ - K+ ATPase enzyme activity. An in vitro incubation of isolated synaptosomes with Aβ (25 - 35) showed toxic effects while NKB showed stimulating effect on the Na+ - K+ ATPase activity, and the combined NKB + Aβ (25 - 35) incubations showed a partial effect as compared to the Aβ (25 - 35) alone. To understand whether E2 affects the expression of Na+ - K+ ATPase molecules, we examined the expression of Na+ - K+ ATPase subunit α1 and β2 in E2 treated aging female rat brain synaptosomes. The enzyme was quantified by SDS PAGE in control and E2 treated rat brain. We observed that the expression of α1 and β2 Na+ - K+ ATPase molecules increased and reversed to a normal level in E2 treated synaptosomes. These results confirmed that E2 increased turnover of Na+ - K+ ATPase molecules in aging rat brain. The present findings also suggest a possible role of NKB with E2 in the age related changes in the brain.
文摘The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stress leading to neurodegeneration associated with excitotoxicity. In the present study, we observed the effect of tachykinin neuropeptide Neurokinin B (NKB) and amyloid beta fragment Aβ (25 -?35) on the activity of Acetylcholine esterase (AChE) and Lipid peroxidation (LPO) in brains of 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. An in-vitro incubation of E2 treated brain synaptosomes with Aβ (25 -?35) showed toxic effects on all the parameters. The treatment of NKB and combined NKB and Aβ (25 -?35) increased the AChE enzyme activity and decreased the level of LPO in E2 treated aging rats. The treatment of NKB and combined NKB and Aβ (25 - 35) in a concentration dependent manner reversed the effects of aging and Aβ (25 -?35) on AChE and LPO. The present finding suggests that E2 along with NKB reverse aging and Aβ (25 -?35) induced toxicity as well as AChE and LPO levels. The results of the current study showed a possible beneficial role of NKB with E2 inthe age related neurological diseases.
文摘Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to determine the effect of tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 -?35) on 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. Aging brain functions were assayed by measuring the activities of antioxidant enzymes—superoxide dismutase (SOD) and monoamine oxidase (MAO) with neuropeptides. An in-vitro incubation of Aβ (25 -?35) in E2 treated brain synaptosomes showed toxic effects on all the parameters. However, NKB and NKB combined with Aβ (25 35) showed stimulating effects in E2 treated rat brain synaptosomes. In the present study, an increase in activity of SOD and decrease in the level of MAO, in the presence of NKB and combined NKB and Aβ in E2 treated brain synaptosomes of aging rats. This study elucidates that treatment of NKB and Aβ with E2 incombination exerts more protective influence than their individual application, against excitotoxicity in age related changes.