Alzheimer’s disease(AD)is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles.Prior to the development of these characteristic pathological hallmarks of AD,ante...Alzheimer’s disease(AD)is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles.Prior to the development of these characteristic pathological hallmarks of AD,anterograde axonal transport is impaired.However,the key proteins that initiate these intracellular impairments remain elusive.The collapsin response mediator protein-2(CRMP-2)plays an integral role in kinesin-1-dependent axonal transport and there is evidence that phosphorylation of CRMP-2releases kinesin-1.Here,we tested the hypothesis that amyloid-beta(Aβ)-dependent phosphorylation of CRMP-2 disrupts its association with the kinesin-1(an anterograde axonal motor transport protein)in AD.We found that brain sections and lysates from AD patients demonstrated elevated phosphorylation of CRMP-2 at the T555 site.Additionally,in the transgenic Tg2576 mouse model of familial AD(FAD)that exhibits Aβaccumulation in the brain with age,we found substantial co-localization of p T555CRMP-2and dystrophic neurites.In SH-SY5Y differentiated neuronal cultures,Aβ-dependent phosphorylation of CRMP-2 at the T555 site was also elevated and this reduced the CRMP-2 association with kinesin-1.The overexpression of an unphosphorylatable form of CRMP-2 in neurons promoted the re-establishment of CRMP-2-kinesin association and axon elongation.These data suggest that Aβ-dependent phosphorylation of CRMP-2 at the T555 site may directly impair anterograde axonal transport protein function,leading to neuronal defects.展开更多
Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects rem...Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects remain unknown. β-amyloid (Aβ) exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease. Therefore, it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβ neurotoxicity. Organotypic hippocampal slices were prepared from 8-day old, Sprague Dawley rats. The tissue slices were exposed to 100 μmol/L Al3142 since day 12 in vitro with and without high-frequency (20 Hz) magnetic stimulation. Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei (NeuN) protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine (BrdU) immunohistochemistry. Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage. Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure (P 〈 0.05) and significantly reduced the number of damaged cells in the hippocampal slices (P 〈 0.05). However, lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mech...BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.展开更多
Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effect...Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.展开更多
After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of...After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor a and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.展开更多
Previous studies have confirmed that telencephalin (TLN) is a neural glycoprotein that protects axonal disruption induced by the beta-amyloid protein (Aβ42/35) in the neural crest-derived tumor cell line Paju. Th...Previous studies have confirmed that telencephalin (TLN) is a neural glycoprotein that protects axonal disruption induced by the beta-amyloid protein (Aβ42/35) in the neural crest-derived tumor cell line Paju. The present study investigated the effects of TLN on neuronal degeneration induced by Aβ42 in the differentiated Paju cell line. Results demonstrated that after cultivating cells in Aβ42 medium, the survival rate of Paju-TLN cells was significantly higher than that of Paju-neo cells, and that apoptotic rate was noticeably reduced. These results indicate that TLN reduces Paju cell apoptosis induced by Aβ42.展开更多
BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with pro...BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients. OBJECTⅣE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH). DESIGN: Contrast observation. SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University. PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease. METHODS- All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was handled through Pearson correlation analysis between Aβ and ApoE. The relationship between Aβ, ApoE concentration with pathogenetic condition and prognosis of the patients was handled through Spearman ranking correlation analysis. MAIN OUTCOME MEASURES:① The concentration of ApoE, Aβ and S100B after SAH in contrast to the control group in CSF by different Hunt-Hess and Glasgow Outcome Scale (GOS) grades; ② The level of correlation between ApoE and Aβ ; ③Correlation between ApoE and Aβ in pathogenetic condition and prognosis of the patients. RESULTS: All 25 SAH patients and 15 controls were involved in the final analysis. ① The concentration of ApoE, Aβ and S100B in CSF: The concentration of ApoE decreased after SAH in contrast to the control group [(0.46±0.007), (0.85±0.11) μg/L, P 〈 0.01], the concentration of ApoE decreased after SAH in contrast to the control group [(5.36± 1.19), (8.41± 1.60) μg/L, P 〈 0.01], and the concentration of S100B increased after SAH in contrast to the control group [(18.60±7.31), (6.56±1.02) pg/L, P 〈 0.01]. ② The concentration of ApoE, Aβ and S100B in CSF after SAH on different Hunt-Hess and GOS grades: The concentration of Aβ in Hunt-Hess Ⅰ -Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(6.63 ± 1.25), (3.35± 1.02) μg/L, P 〈 0.01], and the concentration of ApoE in Hunt-Hess Ⅰ- Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(0.56±0.07), (0.38±0.04) μg/L, P 〈 0.05], the concentration of S100B in Hunt-Hess Ⅰ - Ⅲ grade was lower than Hunt-Hess Ⅳ - Ⅴ grade [(16.32±5.58), (22.85±8.10) pg/L, P 〈 0.01]; the concentration of Aβ in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(3.76± 1.04), (5.89±1.20) μg/L, P 〈 0.01], and the concentration of ApoE in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(0.32±0.02), (0.58±0.07) μg/L, P 〈 0.011, and the concentration of S100B in GOS Ⅰ - Ⅲ grade was higher than GOS Ⅳ, Ⅴ grade [(25.36±9.70), (14.33±6.69) pg/L, P 〈 0.01].③ The results of Pearson correlation analysis and Spearman ranking correlation analysis: There was significantly positive correlation between CSF Aβ concentration and clinical outcome (r=0.65, P 〈 0.01), and the decrease in CSF Aβ concentration correlated significant with that of ApoE (r =0.85, P 〈 0.01). CONCLUSION: There is a significant decrease in both Aβ and ApoE in the CSF after SAH, and there is significant correlation between CSF Aβ and ApoE concentration with clinical outcome, the interactions between these proteins may have important effects on SAH, ApoE and Aβ as surrogate markers for the outcome of patients with SAH.展开更多
Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/ph...Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.展开更多
BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production. OBJECTIVE: To investigate the effects...BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production. OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004. MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups. METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days. MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P 〈 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration of compound nylestriol or 17beta-estradiol did not alter the number of β-APP mRNA-positive neurons. CONCLUSION: The results show that long-term estrogen deficiency results in an increase of expression of β-APP though no changes in the expression of β-APP mRNA are detected. Replacement of estrogen with low-dose 17 beta-estradiol or compound nylestriol tablet inhibits the expression of β-APP in the hippocampus to the same extent.展开更多
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation...Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;展开更多
BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers...BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers for diagnosing various neurodegenerative disorders. OBJECTIVE: To assess the feasibility of tau-protein, phosphorylated tau-protein, beta-amyloid 42 (Aβ42), and 14-3-3 protein as biomarkers for diagnosing several neurodegenerative diseases complicated by cognitive deficits. DESIGN, TIME AND SETTING: A non-randomized, concurrent, case-control investigation was performed in three medical centers in the Czech Republic (Department of Neurology at the University Hospital in Hradec Kralove, Department of Neurology at the 2rd Medical Faculty, and the University Hospital Motol) between October 2000 and November 2006. PARTICIPANTS: Eighteen patients with probable AIzheimer's disease, 4 patients with Creutzfeldt-Jakob disease, 10 patients with frontotemporal dementia, 9 patients with clinically isolated syndrome suggestive of multiple sclerosis, and 7 patients with multiple sclerosis, as well as 38 race-, nationality-, and age-matched cognitively intact controls, were included in the study. Diagnoses were established based on the following criteria: the criteria for Alzheimer's disease proposed by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association, WHO criteria for Creutzfeldt-Jakob disease, Neary criteria for frontotemporal dementia, and McDonald's criteria for multiple sclerosis. All included patients were confirmed to suffer from various degrees of dementia. METHODS: Enzyme-linked immunosorbent assay was used to measure concentrations of tau-protein, phosphorylated tau-protein, and Aβ42 in cerebrospinal fluid (CSF) samples collected by standard lumbar puncture from each patient. Moreover, 14-3-3 protein was assessed by Western blot in CSF of Creutzfeldt-Jakob disease patients. Cognitive status was assessed using the Mini Mental Scale Examination (MMSE) in all subjects. MAIN OUTCOME MEASURES: Establishment of biomarkers with greatest specificity and sensitivity for the investigated disorders according to Receiver Operating Characteristic curves, which were based on values from patients and controls; correlation between concentrations of given biomarkers and demographic parameters, diagnosis, duration of disease, and level of cognitive deficit. RESULTS: Increased concentrations of total tau protein and phosphorylated tau protein, and decreased levels of Aβ42, in CSF of Alzheimer's disease patients reached the required sensitivity/specificity ratio of 80% or greater. A marked elevation in CSF concentrations of total tau protein showed even greater sensitivity than 14-3-3 protein in Creutzfeldt-Jakob disease. There was no association between selected biomarkers and frontotemporal dementia or multiple sclerosis. Phosphorylated tau-protein was the only biomarker that noticeably correlated with MMSE scores for Alzheimer's disease.CONCLUSION: Levels of total tau protein, phosphorylated tau protein, and A!342 in the CSF could differentiate patients with Alzheimer's disease and Creutzfeldt-Jakob disease from healthy controls and patients with other neurodegenerative disorders. The diversity of absolute values demonstrates the necessity to establish a specific standard for each laboratory.展开更多
BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte acti...BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.展开更多
Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo ag...Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.展开更多
Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Al...Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg- radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment.展开更多
Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensi...Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.展开更多
BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, an...BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.展开更多
One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s ...One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s disease using beta-amyloid(25-35)in PC12 cells,and treated the cells with Yizhijiannao Granule and its four monomers,i.e.,icariin,catechin,Panax notoginseng saponins,and eleutheroside E.Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin,Panax notoginseng saponins,and icariin+Panax notoginseng saponins were protective against beta-amyloid(25-35)-induced injury in PC12 cells.Icariin in combination with Panax notoginseng saponins significantly inhibited early apoptosis of PC12 cells with beta-amyloid (25-35)-induced injury compared to icariin or Panax notoginseng saponins alone.The effects of icariin+Panax notoginseng saponins were similar to the effects of Yizhijiannao Granule.The findings indicate that two of the effective monomers of Yizhijiannao Granule,icariin and Panax notoginseng saponins,can synergistically inhibit early apoptosis of PC12 cells induced by beta-amyloid(25-35).展开更多
The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid pr...The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and r-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of AIzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.展开更多
基金supported by King Abdul-Aziz University postgraduate scholarship(to SHM)the National Multiple Sclerosis Society(USA)Project Grant ID#RG43981/1(to SP)
文摘Alzheimer’s disease(AD)is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles.Prior to the development of these characteristic pathological hallmarks of AD,anterograde axonal transport is impaired.However,the key proteins that initiate these intracellular impairments remain elusive.The collapsin response mediator protein-2(CRMP-2)plays an integral role in kinesin-1-dependent axonal transport and there is evidence that phosphorylation of CRMP-2releases kinesin-1.Here,we tested the hypothesis that amyloid-beta(Aβ)-dependent phosphorylation of CRMP-2 disrupts its association with the kinesin-1(an anterograde axonal motor transport protein)in AD.We found that brain sections and lysates from AD patients demonstrated elevated phosphorylation of CRMP-2 at the T555 site.Additionally,in the transgenic Tg2576 mouse model of familial AD(FAD)that exhibits Aβaccumulation in the brain with age,we found substantial co-localization of p T555CRMP-2and dystrophic neurites.In SH-SY5Y differentiated neuronal cultures,Aβ-dependent phosphorylation of CRMP-2 at the T555 site was also elevated and this reduced the CRMP-2 association with kinesin-1.The overexpression of an unphosphorylatable form of CRMP-2 in neurons promoted the re-establishment of CRMP-2-kinesin association and axon elongation.These data suggest that Aβ-dependent phosphorylation of CRMP-2 at the T555 site may directly impair anterograde axonal transport protein function,leading to neuronal defects.
文摘Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects remain unknown. β-amyloid (Aβ) exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease. Therefore, it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβ neurotoxicity. Organotypic hippocampal slices were prepared from 8-day old, Sprague Dawley rats. The tissue slices were exposed to 100 μmol/L Al3142 since day 12 in vitro with and without high-frequency (20 Hz) magnetic stimulation. Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei (NeuN) protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine (BrdU) immunohistochemistry. Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage. Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure (P 〈 0.05) and significantly reduced the number of damaged cells in the hippocampal slices (P 〈 0.05). However, lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
基金the National Natural Science Foundation of China, No. 30973779the National Special Planning Project for Traditional Chinese Medicine of China, No.02-03LP41the Key Program of Scientific Planning of Guangdong Province, No. 2006B35630007
文摘BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.
基金supported by grants from Henan Medical Technologies R&D Program in China,No.200703023,201203130Henan Key Science and Technology Project in China,No.112102310684
文摘Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.
文摘After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor a and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.
文摘Previous studies have confirmed that telencephalin (TLN) is a neural glycoprotein that protects axonal disruption induced by the beta-amyloid protein (Aβ42/35) in the neural crest-derived tumor cell line Paju. The present study investigated the effects of TLN on neuronal degeneration induced by Aβ42 in the differentiated Paju cell line. Results demonstrated that after cultivating cells in Aβ42 medium, the survival rate of Paju-TLN cells was significantly higher than that of Paju-neo cells, and that apoptotic rate was noticeably reduced. These results indicate that TLN reduces Paju cell apoptosis induced by Aβ42.
文摘BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients. OBJECTⅣE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH). DESIGN: Contrast observation. SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University. PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease. METHODS- All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was handled through Pearson correlation analysis between Aβ and ApoE. The relationship between Aβ, ApoE concentration with pathogenetic condition and prognosis of the patients was handled through Spearman ranking correlation analysis. MAIN OUTCOME MEASURES:① The concentration of ApoE, Aβ and S100B after SAH in contrast to the control group in CSF by different Hunt-Hess and Glasgow Outcome Scale (GOS) grades; ② The level of correlation between ApoE and Aβ ; ③Correlation between ApoE and Aβ in pathogenetic condition and prognosis of the patients. RESULTS: All 25 SAH patients and 15 controls were involved in the final analysis. ① The concentration of ApoE, Aβ and S100B in CSF: The concentration of ApoE decreased after SAH in contrast to the control group [(0.46±0.007), (0.85±0.11) μg/L, P 〈 0.01], the concentration of ApoE decreased after SAH in contrast to the control group [(5.36± 1.19), (8.41± 1.60) μg/L, P 〈 0.01], and the concentration of S100B increased after SAH in contrast to the control group [(18.60±7.31), (6.56±1.02) pg/L, P 〈 0.01]. ② The concentration of ApoE, Aβ and S100B in CSF after SAH on different Hunt-Hess and GOS grades: The concentration of Aβ in Hunt-Hess Ⅰ -Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(6.63 ± 1.25), (3.35± 1.02) μg/L, P 〈 0.01], and the concentration of ApoE in Hunt-Hess Ⅰ- Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(0.56±0.07), (0.38±0.04) μg/L, P 〈 0.05], the concentration of S100B in Hunt-Hess Ⅰ - Ⅲ grade was lower than Hunt-Hess Ⅳ - Ⅴ grade [(16.32±5.58), (22.85±8.10) pg/L, P 〈 0.01]; the concentration of Aβ in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(3.76± 1.04), (5.89±1.20) μg/L, P 〈 0.01], and the concentration of ApoE in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(0.32±0.02), (0.58±0.07) μg/L, P 〈 0.011, and the concentration of S100B in GOS Ⅰ - Ⅲ grade was higher than GOS Ⅳ, Ⅴ grade [(25.36±9.70), (14.33±6.69) pg/L, P 〈 0.01].③ The results of Pearson correlation analysis and Spearman ranking correlation analysis: There was significantly positive correlation between CSF Aβ concentration and clinical outcome (r=0.65, P 〈 0.01), and the decrease in CSF Aβ concentration correlated significant with that of ApoE (r =0.85, P 〈 0.01). CONCLUSION: There is a significant decrease in both Aβ and ApoE in the CSF after SAH, and there is significant correlation between CSF Aβ and ApoE concentration with clinical outcome, the interactions between these proteins may have important effects on SAH, ApoE and Aβ as surrogate markers for the outcome of patients with SAH.
基金supported by a grant under Key Projects of Guangxi Traditional Chinese Medical University, No.ZD2007041
文摘Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.
基金the National Key Medical Technologies Research and Development Program of China during the Tenth Five-Year Plan Period, No. 2001BA702B03
文摘BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production. OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004. MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups. METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days. MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P 〈 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration of compound nylestriol or 17beta-estradiol did not alter the number of β-APP mRNA-positive neurons. CONCLUSION: The results show that long-term estrogen deficiency results in an increase of expression of β-APP though no changes in the expression of β-APP mRNA are detected. Replacement of estrogen with low-dose 17 beta-estradiol or compound nylestriol tablet inhibits the expression of β-APP in the hippocampus to the same extent.
文摘Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;
文摘BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers for diagnosing various neurodegenerative disorders. OBJECTIVE: To assess the feasibility of tau-protein, phosphorylated tau-protein, beta-amyloid 42 (Aβ42), and 14-3-3 protein as biomarkers for diagnosing several neurodegenerative diseases complicated by cognitive deficits. DESIGN, TIME AND SETTING: A non-randomized, concurrent, case-control investigation was performed in three medical centers in the Czech Republic (Department of Neurology at the University Hospital in Hradec Kralove, Department of Neurology at the 2rd Medical Faculty, and the University Hospital Motol) between October 2000 and November 2006. PARTICIPANTS: Eighteen patients with probable AIzheimer's disease, 4 patients with Creutzfeldt-Jakob disease, 10 patients with frontotemporal dementia, 9 patients with clinically isolated syndrome suggestive of multiple sclerosis, and 7 patients with multiple sclerosis, as well as 38 race-, nationality-, and age-matched cognitively intact controls, were included in the study. Diagnoses were established based on the following criteria: the criteria for Alzheimer's disease proposed by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association, WHO criteria for Creutzfeldt-Jakob disease, Neary criteria for frontotemporal dementia, and McDonald's criteria for multiple sclerosis. All included patients were confirmed to suffer from various degrees of dementia. METHODS: Enzyme-linked immunosorbent assay was used to measure concentrations of tau-protein, phosphorylated tau-protein, and Aβ42 in cerebrospinal fluid (CSF) samples collected by standard lumbar puncture from each patient. Moreover, 14-3-3 protein was assessed by Western blot in CSF of Creutzfeldt-Jakob disease patients. Cognitive status was assessed using the Mini Mental Scale Examination (MMSE) in all subjects. MAIN OUTCOME MEASURES: Establishment of biomarkers with greatest specificity and sensitivity for the investigated disorders according to Receiver Operating Characteristic curves, which were based on values from patients and controls; correlation between concentrations of given biomarkers and demographic parameters, diagnosis, duration of disease, and level of cognitive deficit. RESULTS: Increased concentrations of total tau protein and phosphorylated tau protein, and decreased levels of Aβ42, in CSF of Alzheimer's disease patients reached the required sensitivity/specificity ratio of 80% or greater. A marked elevation in CSF concentrations of total tau protein showed even greater sensitivity than 14-3-3 protein in Creutzfeldt-Jakob disease. There was no association between selected biomarkers and frontotemporal dementia or multiple sclerosis. Phosphorylated tau-protein was the only biomarker that noticeably correlated with MMSE scores for Alzheimer's disease.CONCLUSION: Levels of total tau protein, phosphorylated tau protein, and A!342 in the CSF could differentiate patients with Alzheimer's disease and Creutzfeldt-Jakob disease from healthy controls and patients with other neurodegenerative disorders. The diversity of absolute values demonstrates the necessity to establish a specific standard for each laboratory.
基金Supported by: the National Natural Science Foundation of China, No. 30770737
文摘BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.
基金financially supported by the National Natural Science Foundation of China,No.81573771the Natural Science Foundation of Jiangsu Province of China,No.BK20151599
文摘Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.
基金supported by a grant from Projects of High-tech Industrialization of Guangdong Province of China,No.2011B010500004a grant from National Financial Major Project of China
文摘Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei- mer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg- radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment.
基金supported by grants from Hebei Provincial Science and Technology Bureau,No.08276101D-21
文摘Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.
基金Supported by:Scientific and Technological Foundation of the National Administration of Traditional Chinese Medicine of China,No.02-03LP41the Scientific and Technological Key Project of Guangdong Province,No. 2006B35630007
文摘BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.
文摘One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s disease using beta-amyloid(25-35)in PC12 cells,and treated the cells with Yizhijiannao Granule and its four monomers,i.e.,icariin,catechin,Panax notoginseng saponins,and eleutheroside E.Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin,Panax notoginseng saponins,and icariin+Panax notoginseng saponins were protective against beta-amyloid(25-35)-induced injury in PC12 cells.Icariin in combination with Panax notoginseng saponins significantly inhibited early apoptosis of PC12 cells with beta-amyloid (25-35)-induced injury compared to icariin or Panax notoginseng saponins alone.The effects of icariin+Panax notoginseng saponins were similar to the effects of Yizhijiannao Granule.The findings indicate that two of the effective monomers of Yizhijiannao Granule,icariin and Panax notoginseng saponins,can synergistically inhibit early apoptosis of PC12 cells induced by beta-amyloid(25-35).
基金supported by the National Natural Science Foundation of China, No. 81171192XMU Basic Training Program of Undergraduate, No. CXB2011019Visiting Scholar Fellowship of Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering of Xiamen University, No. 201101
文摘The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and r-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of AIzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.