Alzheimer's disease(AD), a fatal progressive neurodegenerative disorder, has no cure to date. One of the causes of AD is the accumulation of amyloid-beta 42(Aβ42) plaques, which result in the onset of neurodegen...Alzheimer's disease(AD), a fatal progressive neurodegenerative disorder, has no cure to date. One of the causes of AD is the accumulation of amyloid-beta 42(Aβ42) plaques, which result in the onset of neurodegeneration. It is not known how these plaques trigger the onset of neurodegeneration. There are several animal models developed to(i) study etiology of disease,(ii) look for genetic modifiers, and(iii) identify chemical inhibitors that can block neurodegeneration and help to find cure for this disease. An insect model of Drosophila melanogaster has also provided new insights into the disease. Here we will discuss the utility of the Drosophila eye model to study Alzheimer's disease.展开更多
Background:Alzheimer’s disease(AD)is a fatal disease that threatens the quality of life of an aging population at a global scale.Various hypotheses on the etiology of AD have been developed over the years to guide ef...Background:Alzheimer’s disease(AD)is a fatal disease that threatens the quality of life of an aging population at a global scale.Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies.Main body:In this review,we focus on four AD hypotheses currently relevant to AD onset:the prevailing amyloid cascade hypothesis,the well-recognized tau hypothesis,the increasingly popular pathogen(viral infection)hypothesis,and the infection-related antimicrobial protection hypothesis.In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed,we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis.As a defining feature of AD,the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder.A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons,where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβplaques in the brain.Although infection of the central nerve system by pathogens such as viruses may increase AD risk,it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset.Lastly,the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβpeptides,but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation.Nevertheless,this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβin anti-viral protection.Conclusion:AD is a multi-factor complex disorder,which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline.A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms,which may involve personalized treatment strategies for individual patients at varying stages of disease progression.展开更多
文摘Alzheimer's disease(AD), a fatal progressive neurodegenerative disorder, has no cure to date. One of the causes of AD is the accumulation of amyloid-beta 42(Aβ42) plaques, which result in the onset of neurodegeneration. It is not known how these plaques trigger the onset of neurodegeneration. There are several animal models developed to(i) study etiology of disease,(ii) look for genetic modifiers, and(iii) identify chemical inhibitors that can block neurodegeneration and help to find cure for this disease. An insect model of Drosophila melanogaster has also provided new insights into the disease. Here we will discuss the utility of the Drosophila eye model to study Alzheimer's disease.
基金National Institutes of Health(NIH)AG059217&AG061875 for TYHNIH AG062257,AG057509,AG054111,and AG020670 for HZNIH AG057981,BrightFocus Foundation A2016346F,Alzheimer Association AARG-17-500335,&Florida Department of Health 8AZ07 for CL.
文摘Background:Alzheimer’s disease(AD)is a fatal disease that threatens the quality of life of an aging population at a global scale.Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies.Main body:In this review,we focus on four AD hypotheses currently relevant to AD onset:the prevailing amyloid cascade hypothesis,the well-recognized tau hypothesis,the increasingly popular pathogen(viral infection)hypothesis,and the infection-related antimicrobial protection hypothesis.In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed,we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis.As a defining feature of AD,the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder.A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons,where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβplaques in the brain.Although infection of the central nerve system by pathogens such as viruses may increase AD risk,it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset.Lastly,the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβpeptides,but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation.Nevertheless,this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβin anti-viral protection.Conclusion:AD is a multi-factor complex disorder,which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline.A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms,which may involve personalized treatment strategies for individual patients at varying stages of disease progression.