A large amount of sludge is inevitably produced during sewage treatment.Ultrasonication(US)as anaerobic digestion(AD)pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD pe...A large amount of sludge is inevitably produced during sewage treatment.Ultrasonication(US)as anaerobic digestion(AD)pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated.US was ef-fective in sludge SCOD increase,size decrease,and CH_(4)production in the subsequent AD,and these effects were enhanced with an elevated specific energy input.As indicated by semi-continuous AD experiments,the mean daily CH_(4)production of US-pretreated A^(2)O-,A^(2)O-MBR-,and AO-AO-sludgewere 176.9,119.8,and 141.7 NmL/g-VSadded,whichwere 35.1%,32.1%and 78.2%higher than methane production of their respective raw sludge.The US of A^(2)O-sludge achieved preferable US effects and CH_(4)production due to its high organic con-tent andweak sludge structure stability.In response to US-pretreated sludge,amore diverse microbial community was observed in AD.The US-AD system showed negative net energy;however,it exhibited other positive effects,e.g.,lower required sludge retention time and less residual total solids for disposal.US is a feasible option prior to AD to improve anaer-obic bioconversion and CH_(4)yield although further studies are necessary to advance it in practice.展开更多
The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anae...The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.展开更多
近几年餐厨垃圾资源化日益受到重视,用餐厨垃圾生产生物质燃料棒以及保水疏松介质是一种新的全量资源化技术,但会产生一种新型废水即餐厨垃圾压榨液。该研究主要探究温度对餐厨垃圾压榨液厌氧发酵过程中产甲烷的影响,分析了压榨液厌氧...近几年餐厨垃圾资源化日益受到重视,用餐厨垃圾生产生物质燃料棒以及保水疏松介质是一种新的全量资源化技术,但会产生一种新型废水即餐厨垃圾压榨液。该研究主要探究温度对餐厨垃圾压榨液厌氧发酵过程中产甲烷的影响,分析了压榨液厌氧发酵过程中微生物群落变化。在最佳发酵温度47℃下发酵53 d后,总产气量达17220 m L,日产甲烷量的峰值占日产气量峰值的70%~75%,较37℃日产甲烷量峰值高2.5倍,27、57、67℃在发酵的第5天后不再产生甲烷。通过16S r DNA高通量测序,发现在发酵过程中微氧环境下的优势菌群unclassified_d_Bacteria的相对丰度从83.92%下降到24.16%,在严格厌氧环境下优势菌群Clostridium的相对丰度从0.93%上升到44.75%,在发酵实验结束时Clostridium的相对丰度从44.75%下降到5.40%,unclassified_d_Bacteria的相对丰度从24.16%上升到68.12%。研究结果可为实际工程中餐厨垃圾压榨液厌氧发酵温度和菌种的选择提供参考。展开更多
Anaerobic digestion(AD)has been considered as a promising technique for food waste(FW)recycling.However,the accumulation of volatile fatty acids(VFAs)restricts the stability of anaerobic reactors.The present study inv...Anaerobic digestion(AD)has been considered as a promising technique for food waste(FW)recycling.However,the accumulation of volatile fatty acids(VFAs)restricts the stability of anaerobic reactors.The present study investigated the use of biochar produced at different conditions(750℃-30 min,750℃-60 min,750℃-120 min,550℃-60 min,650℃-60 min,850℃-60 min,950℃-60 min)for enhancing the AD of FW.Batch experiments showed that all the biochar increased the methane production rates and biochar obtained at 750℃-60 min resulted in the highest enhance-ment by 21.5%.It was further showed surface oxygen-containing functional groups and graphitization degree of biochar were the critical factors for improving methane production.Microbial analysis showed that biochar addi-tion formed different microbial communities,and Methanosaeta,Romboutsia,and norank_f_Anaerolineaceae were enriched,which might be correlated with direct interspecies electron transfer(DIET).This research showed biochar could enhance the AD of FW and also revealed the main characteristics of biochar relating with the enhancement of AD.展开更多
An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1...An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure.展开更多
Helsinki Environmental Services Authority HSY ,Ammaissuo waste management centre consists of two landfill sites. The old land filling area was established in 1987 and closed in 2007. The landfilling at the new landfil...Helsinki Environmental Services Authority HSY ,Ammaissuo waste management centre consists of two landfill sites. The old land filling area was established in 1987 and closed in 2007. The landfilling at the new landfill section started in November 2007. Until spring 2014 the main treatment method for source separated MSW (municipal solid'waste) collected from Helsinki Metropolitan area households was landfilling. Approximately 250,000 tonnes of MSW was landfilled annually. From April 2014 on all of the MWS has been utilized in heat and electricity production at new Waste to Energy plant owned and operated by energy company Vantaa Energy Ltd. The landscaping of the landfills is currently ongoing. The construction of the landfill gas collection system was started in 1994 and from 1996 on landfill gas from old landfill area was recovered and burned in torches to reduce the greenhouse gas effect caused by methane in landfill gas. In the end of year (2004) new landfill gas utilisation system was taken in use Gas was used as a fuel in HOB (heat only boiler) to generate district heating for nearby community as well as commercial and industrial sites. The capacity of the system was 7,000 Nm3/h that corresponded to app. 30 MW of heat. Since district heat was mainly needed only during the cold season of the year only about half of the landfill gas produced by the landfill was able to utilize and rest of the gas was still flared leading to relatively low utilization rate of the gas. The construction work of the new 15 MW + 1.2 MW electricity power plant started in spring 2009. The power plant consists of four gas engines and generators and organic rankine cycle process utilizing thermal oil for heat transfer from exhaust gas and steam turbine with hexamethyldisiloxane (silicone oil) as a medium agent. The ORC (Organic Rankine Cycle)-process was commissioned in August 2011 and the operational experiences have been very good. Based on current knowledge the HSY power plant is the biggest landfill gas fired power plant in Europe and probably even in the whole world. Also the combined engine and ORC-process is unique for landfill gas power plants. The third phase of the biogas utilization took place in summer 2015 when the anaerobic digestion biowaste treatment plant was introduced. At the moment the product gas from digestion plant is utilized at landfill gas power plant. In the future gas will be used as a fuel for new power plant process consisting two gas engines and ORC process. Commissioning of the new power plant will take place in October 2016. This paper presents detailed description of the landfill gas utilization system of HSY waste treatment centre and information on operational experiences of landfill gas fired power plant process.展开更多
Anaerobic digestion(AD)is a promising technology for the treatment of waste activated sludge(WAS)with energy recovery.However,the low methane yield and slow methanogenesis limit its broad application.In this study,the...Anaerobic digestion(AD)is a promising technology for the treatment of waste activated sludge(WAS)with energy recovery.However,the low methane yield and slow methanogenesis limit its broad application.In this study,the NiFe_(2)O_(4)nanoparticles(NPs)were fabricated and applied as a conductive material to enhance the AD via promoting the direct interspecies electron transfer(DIET).The crystal structure,specific surface area,morphology and elemental composition of the as-prepared NiFe_(2)O_(4)NPs were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The biochemical methane potential(BMP)test was performed(lasting for 35 days)to evaluate the energy recovery in AD with the addition of the NiFe_(2)O_(4)NPs.The results illustrate that NiFe_(2)O_(4)NPs could accelerate both the hydrolysis,acidogenesis and methanogenesis,i.e.,the cumulative methane production and daily methane yield increased from 96.76±1.70 mL/gVS and 8.24±1.26 mL gVS^(-1)d^(-1)in the absence of NiFe_(2)O_(4)NPs(Group A)to 123.69±3.20 mL/gVS and 9.71±0.77 mL gVS^(-1)d^(-1)in the presence of NiFe_(2)O_(4)NPs(Group B).The model simulation results showed that both the first-order kinetic model and the modified Gompertz model can well simulate the experimental results.The hydrolysis rate constant k increased from 0.04±0.01 d^(-1)in Group A to 0.06±0.01 d^(-1)in Group B.And the maximum methane production potential and activity were both improved after adding NiFe_(2)O_(4).The microbial community analysis revealed that the microorganisms associated with hydrolysis and acidogenesis were more abundant in the presence of NiFe_(2)O_(4).And the methanogenic archaea were enriched to a larger extent,resulted in the higher methanogenesis activities via dosing NiFe_(2)O_(4).展开更多
基金supported by the National Natural Science Foundation of China(Nos.52192683,51925807,and 52221004)the National Science Fund for Distinguished Young Scholars of China(No.52125003)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC014).
文摘A large amount of sludge is inevitably produced during sewage treatment.Ultrasonication(US)as anaerobic digestion(AD)pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated.US was ef-fective in sludge SCOD increase,size decrease,and CH_(4)production in the subsequent AD,and these effects were enhanced with an elevated specific energy input.As indicated by semi-continuous AD experiments,the mean daily CH_(4)production of US-pretreated A^(2)O-,A^(2)O-MBR-,and AO-AO-sludgewere 176.9,119.8,and 141.7 NmL/g-VSadded,whichwere 35.1%,32.1%and 78.2%higher than methane production of their respective raw sludge.The US of A^(2)O-sludge achieved preferable US effects and CH_(4)production due to its high organic con-tent andweak sludge structure stability.In response to US-pretreated sludge,amore diverse microbial community was observed in AD.The US-AD system showed negative net energy;however,it exhibited other positive effects,e.g.,lower required sludge retention time and less residual total solids for disposal.US is a feasible option prior to AD to improve anaer-obic bioconversion and CH_(4)yield although further studies are necessary to advance it in practice.
基金supported by the National Natural Science Foundation of China(Nos.51978498 and 52131002)the National Key R&D Program of China(No.2019YFC1906301)。
文摘The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
文摘近几年餐厨垃圾资源化日益受到重视,用餐厨垃圾生产生物质燃料棒以及保水疏松介质是一种新的全量资源化技术,但会产生一种新型废水即餐厨垃圾压榨液。该研究主要探究温度对餐厨垃圾压榨液厌氧发酵过程中产甲烷的影响,分析了压榨液厌氧发酵过程中微生物群落变化。在最佳发酵温度47℃下发酵53 d后,总产气量达17220 m L,日产甲烷量的峰值占日产气量峰值的70%~75%,较37℃日产甲烷量峰值高2.5倍,27、57、67℃在发酵的第5天后不再产生甲烷。通过16S r DNA高通量测序,发现在发酵过程中微氧环境下的优势菌群unclassified_d_Bacteria的相对丰度从83.92%下降到24.16%,在严格厌氧环境下优势菌群Clostridium的相对丰度从0.93%上升到44.75%,在发酵实验结束时Clostridium的相对丰度从44.75%下降到5.40%,unclassified_d_Bacteria的相对丰度从24.16%上升到68.12%。研究结果可为实际工程中餐厨垃圾压榨液厌氧发酵温度和菌种的选择提供参考。
基金Science and Technology Commission of Shanghai Municipality(19DZ1204704,22ZR1405900)National Natural Science Foundation of China(31970117)Hong Kong Environment and Conservation Fund(Project 101/2020).
文摘Anaerobic digestion(AD)has been considered as a promising technique for food waste(FW)recycling.However,the accumulation of volatile fatty acids(VFAs)restricts the stability of anaerobic reactors.The present study investigated the use of biochar produced at different conditions(750℃-30 min,750℃-60 min,750℃-120 min,550℃-60 min,650℃-60 min,850℃-60 min,950℃-60 min)for enhancing the AD of FW.Batch experiments showed that all the biochar increased the methane production rates and biochar obtained at 750℃-60 min resulted in the highest enhance-ment by 21.5%.It was further showed surface oxygen-containing functional groups and graphitization degree of biochar were the critical factors for improving methane production.Microbial analysis showed that biochar addi-tion formed different microbial communities,and Methanosaeta,Romboutsia,and norank_f_Anaerolineaceae were enriched,which might be correlated with direct interspecies electron transfer(DIET).This research showed biochar could enhance the AD of FW and also revealed the main characteristics of biochar relating with the enhancement of AD.
基金supported by the Korean Ministry of Agriculture, Food and Rural Affairs (313007-03-1-HD020)
文摘An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure.
文摘Helsinki Environmental Services Authority HSY ,Ammaissuo waste management centre consists of two landfill sites. The old land filling area was established in 1987 and closed in 2007. The landfilling at the new landfill section started in November 2007. Until spring 2014 the main treatment method for source separated MSW (municipal solid'waste) collected from Helsinki Metropolitan area households was landfilling. Approximately 250,000 tonnes of MSW was landfilled annually. From April 2014 on all of the MWS has been utilized in heat and electricity production at new Waste to Energy plant owned and operated by energy company Vantaa Energy Ltd. The landscaping of the landfills is currently ongoing. The construction of the landfill gas collection system was started in 1994 and from 1996 on landfill gas from old landfill area was recovered and burned in torches to reduce the greenhouse gas effect caused by methane in landfill gas. In the end of year (2004) new landfill gas utilisation system was taken in use Gas was used as a fuel in HOB (heat only boiler) to generate district heating for nearby community as well as commercial and industrial sites. The capacity of the system was 7,000 Nm3/h that corresponded to app. 30 MW of heat. Since district heat was mainly needed only during the cold season of the year only about half of the landfill gas produced by the landfill was able to utilize and rest of the gas was still flared leading to relatively low utilization rate of the gas. The construction work of the new 15 MW + 1.2 MW electricity power plant started in spring 2009. The power plant consists of four gas engines and generators and organic rankine cycle process utilizing thermal oil for heat transfer from exhaust gas and steam turbine with hexamethyldisiloxane (silicone oil) as a medium agent. The ORC (Organic Rankine Cycle)-process was commissioned in August 2011 and the operational experiences have been very good. Based on current knowledge the HSY power plant is the biggest landfill gas fired power plant in Europe and probably even in the whole world. Also the combined engine and ORC-process is unique for landfill gas power plants. The third phase of the biogas utilization took place in summer 2015 when the anaerobic digestion biowaste treatment plant was introduced. At the moment the product gas from digestion plant is utilized at landfill gas power plant. In the future gas will be used as a fuel for new power plant process consisting two gas engines and ORC process. Commissioning of the new power plant will take place in October 2016. This paper presents detailed description of the landfill gas utilization system of HSY waste treatment centre and information on operational experiences of landfill gas fired power plant process.
基金financially supported by the Fundamental Research Funds for Central Universities(Nos.3102019AX18 and 310201911cx021)the Specialized Fund for the Post-Disaster Reconstruction and Heritage Project ion in Sichuan Province(No.5132202019000128)。
文摘Anaerobic digestion(AD)is a promising technology for the treatment of waste activated sludge(WAS)with energy recovery.However,the low methane yield and slow methanogenesis limit its broad application.In this study,the NiFe_(2)O_(4)nanoparticles(NPs)were fabricated and applied as a conductive material to enhance the AD via promoting the direct interspecies electron transfer(DIET).The crystal structure,specific surface area,morphology and elemental composition of the as-prepared NiFe_(2)O_(4)NPs were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The biochemical methane potential(BMP)test was performed(lasting for 35 days)to evaluate the energy recovery in AD with the addition of the NiFe_(2)O_(4)NPs.The results illustrate that NiFe_(2)O_(4)NPs could accelerate both the hydrolysis,acidogenesis and methanogenesis,i.e.,the cumulative methane production and daily methane yield increased from 96.76±1.70 mL/gVS and 8.24±1.26 mL gVS^(-1)d^(-1)in the absence of NiFe_(2)O_(4)NPs(Group A)to 123.69±3.20 mL/gVS and 9.71±0.77 mL gVS^(-1)d^(-1)in the presence of NiFe_(2)O_(4)NPs(Group B).The model simulation results showed that both the first-order kinetic model and the modified Gompertz model can well simulate the experimental results.The hydrolysis rate constant k increased from 0.04±0.01 d^(-1)in Group A to 0.06±0.01 d^(-1)in Group B.And the maximum methane production potential and activity were both improved after adding NiFe_(2)O_(4).The microbial community analysis revealed that the microorganisms associated with hydrolysis and acidogenesis were more abundant in the presence of NiFe_(2)O_(4).And the methanogenic archaea were enriched to a larger extent,resulted in the higher methanogenesis activities via dosing NiFe_(2)O_(4).