Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod...Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.展开更多
Fully nonlinear water entry of a cone into waves with gravity effect has been analyzed based on a three-dimensional(3D)higher-order boundary method(HOBEM).The total velocity potential at the initial time is divided in...Fully nonlinear water entry of a cone into waves with gravity effect has been analyzed based on a three-dimensional(3D)higher-order boundary method(HOBEM).The total velocity potential at the initial time is divided into the incident and scattering components.In the subsequent time steps,the solution of the velocity potential is defined as a whole through instantaneous boundary conditions.Based on the image theory,a modified Green function is applied to establish the integral equations so that only half of the calculation domain is considered and the seabed can be excluded.The free surface elevation is tracked along a given azimuth plane in the polar coordinate system,while the horizontal motion of the water particle is updated by using a segment-spring analogy method,which redistributes nodes and maintains mesh connectivity according to linear stiffness.An auxiliary function is applied to solve the pressure distribution,instead of directly calculating time derivative of the velocity potential.The high accuracy of the present numerical method is achieved through a detailed convergence study and comparison with results in the literature.Simulations are emphatically performed to examine the effects of gravity,wave nonlinearity,entry location,and oblique entry.展开更多
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and ...The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.展开更多
The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the ...The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the vertical direction is optimized by combining logging identification and comprehensive geological analysis. The thickness in this layer is obtained by logging interpretation in the basin. The favorable shale gas accumulation area is selected by referring to thickness and depth data. Furthermore, the shale gas resource amount of the layer in the favorable area is calculated using the analogy method. Results show that among the five potential hydrocarbon source rocks, the lower Napo Formation is the most likely shale gas layer. The west and northwest zones, which are in the deep-sea slope and shelf sedimentary environments, respectively, are the favorable areas for shale gas accumulation. The favorable sedimentary environment formed thick black shale that is rich in organic matter. The black shale generated hydrocarbon, which migrated laterally to the eastern shallow water shelf to form numerous oil fields. The result of the shale gas resource in the two favorable areas,as calculated by the analogy method, is 55,500×10;m;. This finding shows the high exploration and development potential of shale gas in the basin.展开更多
The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained base...The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.展开更多
We arrange quantum mechanical operators ■ in their normally ordered product forms by using Touchard polynomials.Moreover,we derive the anti-normally ordered forms of ■ by using special functions as well as Stirling-...We arrange quantum mechanical operators ■ in their normally ordered product forms by using Touchard polynomials.Moreover,we derive the anti-normally ordered forms of ■ by using special functions as well as Stirling-like numbers together with the general mutual transformation rule between normal and anti-normal orderings of operators.Further,the Q-and P-ordered forms of(QP)±m are also obtained by using an analogy method.展开更多
The onshore and offshore parts of the East Greenland Basin are important areas for petroleum exploration at the North Pole. Although assessments by the US Geological Survey suggest a substantial petroleum potential in...The onshore and offshore parts of the East Greenland Basin are important areas for petroleum exploration at the North Pole. Although assessments by the US Geological Survey suggest a substantial petroleum potential in this area, their estimates carry a high risk because of uncertainties in the exploration data. This paper compares the reservoir-forming conditions based on data from the East Greenland Basin and the North Sea Basin. The petroleum resources of the East Greenland Basin were assessed by geochemical and analogy methods. The East Greenland Basin was a rift basin in the late Paleozoic–Mesozoic. Its basement is metamorphic rock formed by the Caledonian Orogeny in the Archean to Late Ordovician. In the basin, Devonian–Paleogene strata were deposited on the basement. Lacustrine source rock formed in the late Paleozoic and marine source rocks in the Late Jurassic. Shallow-marine sandstone reservoirs formed in the Middle Jurassic and deep-marine turbiditic sandstone reservoirs formed in the Cretaceous.The trap types are structure traps, horst and fault-block traps, salt structure traps, and stratigraphic traps. The East Greenland Basin possesses superior reservoir-forming conditions, favorable petroleum potential and preferable exploration prospects. Because of the lack of exploration data, further evaluation of the favorable types of traps, essential amount of source rock, petroleum-generation conditions and appropriate burial histories in the East Greenland Basin are required.展开更多
Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and num...Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis(FEA) is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating(TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained.展开更多
Purpose The purpose of this work is to study the pulse shape,energy resolution,non-proportionality of energy response for gamma-rays,and time characteristics of CeBr_(3) detector.Method The time and energy responses o...Purpose The purpose of this work is to study the pulse shape,energy resolution,non-proportionality of energy response for gamma-rays,and time characteristics of CeBr_(3) detector.Method The time and energy responses of two CeBr_(3) detectors were characterized by an analog method and a digital method using a set of standardγ-ray sources.The pulse shape,energy resolution and non-proportionality(nPR)of energy response forγ-rays were characterized using the analog method.For the analog method,the high voltage applied to PMTs,parameters of walk and external delay of constant fraction discriminator were optimized.For the digital method,a CEAN 1729A digitizer with sampling frequency of 2 GS/s and resolution of 11 bit,and a digital constant fraction discrimination technique were used to study the time performance of the two CeBr_(3) detectors.Then,the coincidence time resolutions of the CeBr_(3) detectors for the gamma peaks of ^(22)Na and ^(60)Co were measured using the two methods.Results The t_(rise),lifetimeτ,t_(fall) for CeBr_(3)21^(#)and 22^(#)are 11.2 ns,23.8 ns,50.2 ns,and 10.4 ns,26.5 ns,58.6 ns,respectively.The measured non-proportionality of CeBr_(3)21^(#)and 22^(#)are 1.08%and 2.22%,respectively.The time resolutions of the two CeBr_(3) detectors are 244±2 ps and 248±3 ps at the energy peaks of ^(60)Co source,and 336±2 ps and 335±3 ps at 511 keV for the analog and the digital methods.Conclusions The time resolutions obtained by the analog method and the digital method are almost identical.The CeBr_(3) detector is a good option in the applications such as half-life measurements,ToF-PET and high counting rate conditions.Furthermore,it is a goodγ-ray spectrometer owing to the preferable energy resolution and non-internal activity.展开更多
基金supported by a major consulting project of"South China Sea Oil and Gas Comprehensive Development Strategy Research"led by Academician Gao Deli and the Faculty of Chinese Academy of SciencesCounsulting Project of Chinese Academy of Science(Approval Number:2019-ZW11-Z-035)+1 种基金National Key Basic Research and Development Program(973)(Nos:2006CB202300,2011CB201100)China High-tech R&D Program(863)(2013AA092600)。
文摘Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52025112,51861130358,and 51609109)the State Key Laboratory of Ocean Engineering,China(Shanghai Jiao Tong University)(Grant No.1905)+1 种基金the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Societythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_3156).
文摘Fully nonlinear water entry of a cone into waves with gravity effect has been analyzed based on a three-dimensional(3D)higher-order boundary method(HOBEM).The total velocity potential at the initial time is divided into the incident and scattering components.In the subsequent time steps,the solution of the velocity potential is defined as a whole through instantaneous boundary conditions.Based on the image theory,a modified Green function is applied to establish the integral equations so that only half of the calculation domain is considered and the seabed can be excluded.The free surface elevation is tracked along a given azimuth plane in the polar coordinate system,while the horizontal motion of the water particle is updated by using a segment-spring analogy method,which redistributes nodes and maintains mesh connectivity according to linear stiffness.An auxiliary function is applied to solve the pressure distribution,instead of directly calculating time derivative of the velocity potential.The high accuracy of the present numerical method is achieved through a detailed convergence study and comparison with results in the literature.Simulations are emphatically performed to examine the effects of gravity,wave nonlinearity,entry location,and oblique entry.
文摘The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.
文摘The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the vertical direction is optimized by combining logging identification and comprehensive geological analysis. The thickness in this layer is obtained by logging interpretation in the basin. The favorable shale gas accumulation area is selected by referring to thickness and depth data. Furthermore, the shale gas resource amount of the layer in the favorable area is calculated using the analogy method. Results show that among the five potential hydrocarbon source rocks, the lower Napo Formation is the most likely shale gas layer. The west and northwest zones, which are in the deep-sea slope and shelf sedimentary environments, respectively, are the favorable areas for shale gas accumulation. The favorable sedimentary environment formed thick black shale that is rich in organic matter. The black shale generated hydrocarbon, which migrated laterally to the eastern shallow water shelf to form numerous oil fields. The result of the shale gas resource in the two favorable areas,as calculated by the analogy method, is 55,500×10;m;. This finding shows the high exploration and development potential of shale gas in the basin.
基金the National Natural Science Foundation of China (Nos. 11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11804085)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MEM012).
文摘We arrange quantum mechanical operators ■ in their normally ordered product forms by using Touchard polynomials.Moreover,we derive the anti-normally ordered forms of ■ by using special functions as well as Stirling-like numbers together with the general mutual transformation rule between normal and anti-normal orderings of operators.Further,the Q-and P-ordered forms of(QP)±m are also obtained by using an analogy method.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant no.CHINARE2016-04-03)
文摘The onshore and offshore parts of the East Greenland Basin are important areas for petroleum exploration at the North Pole. Although assessments by the US Geological Survey suggest a substantial petroleum potential in this area, their estimates carry a high risk because of uncertainties in the exploration data. This paper compares the reservoir-forming conditions based on data from the East Greenland Basin and the North Sea Basin. The petroleum resources of the East Greenland Basin were assessed by geochemical and analogy methods. The East Greenland Basin was a rift basin in the late Paleozoic–Mesozoic. Its basement is metamorphic rock formed by the Caledonian Orogeny in the Archean to Late Ordovician. In the basin, Devonian–Paleogene strata were deposited on the basement. Lacustrine source rock formed in the late Paleozoic and marine source rocks in the Late Jurassic. Shallow-marine sandstone reservoirs formed in the Middle Jurassic and deep-marine turbiditic sandstone reservoirs formed in the Cretaceous.The trap types are structure traps, horst and fault-block traps, salt structure traps, and stratigraphic traps. The East Greenland Basin possesses superior reservoir-forming conditions, favorable petroleum potential and preferable exploration prospects. Because of the lack of exploration data, further evaluation of the favorable types of traps, essential amount of source rock, petroleum-generation conditions and appropriate burial histories in the East Greenland Basin are required.
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51121004)the Fundamental Research Funds for the Central Universities of China (No. HIT.BRETIV.201315)
文摘Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis(FEA) is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating(TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained.
基金supported by the National Science Founda-tion of China(Grant No.11575165 and 11775200)
文摘Purpose The purpose of this work is to study the pulse shape,energy resolution,non-proportionality of energy response for gamma-rays,and time characteristics of CeBr_(3) detector.Method The time and energy responses of two CeBr_(3) detectors were characterized by an analog method and a digital method using a set of standardγ-ray sources.The pulse shape,energy resolution and non-proportionality(nPR)of energy response forγ-rays were characterized using the analog method.For the analog method,the high voltage applied to PMTs,parameters of walk and external delay of constant fraction discriminator were optimized.For the digital method,a CEAN 1729A digitizer with sampling frequency of 2 GS/s and resolution of 11 bit,and a digital constant fraction discrimination technique were used to study the time performance of the two CeBr_(3) detectors.Then,the coincidence time resolutions of the CeBr_(3) detectors for the gamma peaks of ^(22)Na and ^(60)Co were measured using the two methods.Results The t_(rise),lifetimeτ,t_(fall) for CeBr_(3)21^(#)and 22^(#)are 11.2 ns,23.8 ns,50.2 ns,and 10.4 ns,26.5 ns,58.6 ns,respectively.The measured non-proportionality of CeBr_(3)21^(#)and 22^(#)are 1.08%and 2.22%,respectively.The time resolutions of the two CeBr_(3) detectors are 244±2 ps and 248±3 ps at the energy peaks of ^(60)Co source,and 336±2 ps and 335±3 ps at 511 keV for the analog and the digital methods.Conclusions The time resolutions obtained by the analog method and the digital method are almost identical.The CeBr_(3) detector is a good option in the applications such as half-life measurements,ToF-PET and high counting rate conditions.Furthermore,it is a goodγ-ray spectrometer owing to the preferable energy resolution and non-internal activity.