Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmo...Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmol/L)on the two 11S fractions were investigated.Results show that after removing 2-mercaptoethanol(2-ME)by size exclusion chromatography,the 11S fraction with high surface sulfhydryl content(2.0 mol sulfhydryl/mol 11S)progressively formed 15S and 21S in dilute solutions during storage at 4℃ for 82 days.While,the 11s fraction with low surface sulfhydryl content(0.2 mol sulfhydryl/mol 11S)was stable under the same condition.Moreover,after treating the 11s with high surface sulfhydryl content with 1 mmol/L H_(2)O_(2),the weight percentage of 15S reached the maximum value of 20%.The 15S induced by air and H_(2)O_(2)could be totally converted to 11S with the addition of 10 mmol/L 2-ME,which could be attributed to that the disulfide bond linking two 11S molecules is on the surface of the 15S and easily accessible to the reducing agent 2-ME.This study helps us to deeply understand the formation mechanism of 15S and the stability of 11S.展开更多
Apart from long-known and applied nanostructures like carbon black for tyres or pigments for coatings nanotechnology has created highly sophisticated structures used for nano/molecular electronics,diagnostics,drug del...Apart from long-known and applied nanostructures like carbon black for tyres or pigments for coatings nanotechnology has created highly sophisticated structures used for nano/molecular electronics,diagnostics,drug delivery, UV-absorbers etc.Often the main question to be solved analytically is the local determination of tiny amounts of chemicals resulting in an ever increasing need for highly sensitive as well as locally resolved techniques.Applications of techniques like mass spectroscopy,transmission elect...展开更多
基金supported by the National Natural Science Foundation of China(No.22173092 and No.21674107).
文摘Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmol/L)on the two 11S fractions were investigated.Results show that after removing 2-mercaptoethanol(2-ME)by size exclusion chromatography,the 11S fraction with high surface sulfhydryl content(2.0 mol sulfhydryl/mol 11S)progressively formed 15S and 21S in dilute solutions during storage at 4℃ for 82 days.While,the 11s fraction with low surface sulfhydryl content(0.2 mol sulfhydryl/mol 11S)was stable under the same condition.Moreover,after treating the 11s with high surface sulfhydryl content with 1 mmol/L H_(2)O_(2),the weight percentage of 15S reached the maximum value of 20%.The 15S induced by air and H_(2)O_(2)could be totally converted to 11S with the addition of 10 mmol/L 2-ME,which could be attributed to that the disulfide bond linking two 11S molecules is on the surface of the 15S and easily accessible to the reducing agent 2-ME.This study helps us to deeply understand the formation mechanism of 15S and the stability of 11S.
文摘Apart from long-known and applied nanostructures like carbon black for tyres or pigments for coatings nanotechnology has created highly sophisticated structures used for nano/molecular electronics,diagnostics,drug delivery, UV-absorbers etc.Often the main question to be solved analytically is the local determination of tiny amounts of chemicals resulting in an ever increasing need for highly sensitive as well as locally resolved techniques.Applications of techniques like mass spectroscopy,transmission elect...