Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being exp...As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being explored as low cost alternatives to range based localization techniques. To manage cost, few location aware nodes, called anchors are deployed in the wireless sensor environment. It is from these anchors that all other free nodes are expected to estimate their own positions. This paper therefore, takes a look at some of the foremost Range-free localization algorithms, detailing their limitations, with a view to proposing a modified form of Centroid Localization Algorithm called Reach Centroid Localization Algorithm. The algorithm employs a form of anchor nodes position validation mechanism by looking at the consistency in the quality of Received Signal Strength. Each anchor within the vicinity of a free node seeks to validate the actual position or proximity of other anchors within its vicinity using received signal strength. This process mitigates multipath effects of radio waves, particularly in an enclosed environment, and consequently limits localization estimation errors and uncertainties. Centroid Localization Algorithm is then used to estimate the location of a node using the anchors selected through the validation mechanism. Our approach to localization becomes more significant, particularly in indoor environments, where radio signal signatures are inconsistent or outrightly unreliable. Simulated results show a significant improvement in localization accuracy when compared with the original Centroid Localization Algorithm, Approximate Point in Triangulation and DV-Hop.展开更多
为解决无线传感器网络基于位置相对关系进行定位算法中,定位精度过度依赖信标节点密度问题,通过3种非测距定位算法、质心算法、APIT(Approximate Point in Triangulation)算法及AIGS(Annulus Intersection and Grid Scan)算法的原理研究...为解决无线传感器网络基于位置相对关系进行定位算法中,定位精度过度依赖信标节点密度问题,通过3种非测距定位算法、质心算法、APIT(Approximate Point in Triangulation)算法及AIGS(Annulus Intersection and Grid Scan)算法的原理研究,给出了信标节点密度与定位精度和能耗之间的数学关系,并提出基于迭代的改进算法。3种算法定位精度正比于信标节点密度,算法能耗正比于信标节点密度,在同一个监测区域,信标节点比例相同情况下,AIGS算法定位精度最高,质心算法定位精度最低。当信标节点稀疏时,将部分未知节点通过质心算法转化为信标节点迭代算法,在较低信标节点比例条件下提升3种算法定位精度。展开更多
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.
文摘As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being explored as low cost alternatives to range based localization techniques. To manage cost, few location aware nodes, called anchors are deployed in the wireless sensor environment. It is from these anchors that all other free nodes are expected to estimate their own positions. This paper therefore, takes a look at some of the foremost Range-free localization algorithms, detailing their limitations, with a view to proposing a modified form of Centroid Localization Algorithm called Reach Centroid Localization Algorithm. The algorithm employs a form of anchor nodes position validation mechanism by looking at the consistency in the quality of Received Signal Strength. Each anchor within the vicinity of a free node seeks to validate the actual position or proximity of other anchors within its vicinity using received signal strength. This process mitigates multipath effects of radio waves, particularly in an enclosed environment, and consequently limits localization estimation errors and uncertainties. Centroid Localization Algorithm is then used to estimate the location of a node using the anchors selected through the validation mechanism. Our approach to localization becomes more significant, particularly in indoor environments, where radio signal signatures are inconsistent or outrightly unreliable. Simulated results show a significant improvement in localization accuracy when compared with the original Centroid Localization Algorithm, Approximate Point in Triangulation and DV-Hop.
文摘为解决无线传感器网络基于位置相对关系进行定位算法中,定位精度过度依赖信标节点密度问题,通过3种非测距定位算法、质心算法、APIT(Approximate Point in Triangulation)算法及AIGS(Annulus Intersection and Grid Scan)算法的原理研究,给出了信标节点密度与定位精度和能耗之间的数学关系,并提出基于迭代的改进算法。3种算法定位精度正比于信标节点密度,算法能耗正比于信标节点密度,在同一个监测区域,信标节点比例相同情况下,AIGS算法定位精度最高,质心算法定位精度最低。当信标节点稀疏时,将部分未知节点通过质心算法转化为信标节点迭代算法,在较低信标节点比例条件下提升3种算法定位精度。