Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysi...The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysis of a bolt support system taking into consideration the working surroundings of the anchor. The natural frequency distribution of the system under various preload forces of the anchor was analyzed with ANSYS. Our results show that each order of the system frequency varied with an increase in preload forces. A single order frequency decreased with an increase in the preload force. A preload force affected low-order frequencies more than high-order frequencies. We obtained a functional relationship by fitting preload forces and fundamental frequencies, which was in agreement with our theretical considerations. This study provides theoretical support for the detection of preload forces.展开更多
Plant roots mechanically enhance the strength of soil and improve slope stability through anchoring.Given the popularization of ecological slope-protection technology,a quantitative study of how roots help to anchor s...Plant roots mechanically enhance the strength of soil and improve slope stability through anchoring.Given the popularization of ecological slope-protection technology,a quantitative study of how roots help to anchor soil is highly pertinent.The object of the present study is thus to investigate how roots and soil combine to affect the mechanical properties of the root-soil interface.Toward this end,pullout experiments of cedar roots of different diameters in soils of different density were conducted.The experimental results show that the maximum pullout force increases significantly with increasing root diameter,but only slightly increases with increasing soil density,which indicates that the root diameter has a greater impact on the maximum pullout force than soil density.Next,based on studies of fiber-reinforced composites,a root-soil pull-out model was proposed to study the evolution of shear stress on root-soil interface.This approach ensures that the model accurately reflects the dynamic stress distribution evolution at the root-soil interface and can calculate the pullout process of embedded root from soil.The accuracy of the model is verified by comparing the calculated results with experimental results.Finally,how soil density and root diameter affect the anchoring force was analyzed.The results indicate that the maximum anchoring force increases linearly with increasing root diameter,but nonlinearly with increasing soil density until reaching a fixed value.These results show that the root soil pull-out model has significant practical value in slope protection.展开更多
The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- r...The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.展开更多
The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchor...The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components.展开更多
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
基金the financial support from the National Basic Research Program of China (No. 2013CB227900)the China Postdoctoral Science Foundation (No. 20110491483)the State Key Laboratory of Coal Resources and Mine Safety(No. 10F08)
文摘The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysis of a bolt support system taking into consideration the working surroundings of the anchor. The natural frequency distribution of the system under various preload forces of the anchor was analyzed with ANSYS. Our results show that each order of the system frequency varied with an increase in preload forces. A single order frequency decreased with an increase in the preload force. A preload force affected low-order frequencies more than high-order frequencies. We obtained a functional relationship by fitting preload forces and fundamental frequencies, which was in agreement with our theretical considerations. This study provides theoretical support for the detection of preload forces.
基金financially supported by the National Natural Science Foundation of China(41790432)the NSFC-ICIMOD joint project(41761144077)the“Belt&Road”international cooperation team project of CAS(Su Li-jun)。
文摘Plant roots mechanically enhance the strength of soil and improve slope stability through anchoring.Given the popularization of ecological slope-protection technology,a quantitative study of how roots help to anchor soil is highly pertinent.The object of the present study is thus to investigate how roots and soil combine to affect the mechanical properties of the root-soil interface.Toward this end,pullout experiments of cedar roots of different diameters in soils of different density were conducted.The experimental results show that the maximum pullout force increases significantly with increasing root diameter,but only slightly increases with increasing soil density,which indicates that the root diameter has a greater impact on the maximum pullout force than soil density.Next,based on studies of fiber-reinforced composites,a root-soil pull-out model was proposed to study the evolution of shear stress on root-soil interface.This approach ensures that the model accurately reflects the dynamic stress distribution evolution at the root-soil interface and can calculate the pullout process of embedded root from soil.The accuracy of the model is verified by comparing the calculated results with experimental results.Finally,how soil density and root diameter affect the anchoring force was analyzed.The results indicate that the maximum anchoring force increases linearly with increasing root diameter,but nonlinearly with increasing soil density until reaching a fixed value.These results show that the root soil pull-out model has significant practical value in slope protection.
基金supports from the National Natural Science Foundation of China (Nos. 51204166 and 51174195)the Advantage Disciplines Construction Fund Program of Jiangsu Universities (No. SZBF2011-6-B35)
文摘The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.
基金This work was supported by National Natural Science Foundation of China(Nos.52164001,52064006 and 52004072)the Science and Technology Support Project of Guizhou(Nos.[2020]4Y044),[2021]N404 and[2021]N511)+2 种基金the Cultivation Program of Guizhou University([2020]No.1)the Talents of Guizhou University(No.201901)the Special Research Funds of Guizhou University(Nos.201903,202011 and 202012).
文摘The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components.