Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigat...Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10% Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Sinensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in- ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani- sole-induced group, and the expression of glial fibrillary acidic protein was negative. Alter they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem cell differentiation into neuron-like cells and produce less cytotoxicity.展开更多
Objective To investigate the effect of reinforced Decoction of Angelicae Sinensis for enriching blood (RDAEB) on the immunity of immunosuppressed mice induced by cyclophosphamide (Cy). Methods Mice were given RDAEB th...Objective To investigate the effect of reinforced Decoction of Angelicae Sinensis for enriching blood (RDAEB) on the immunity of immunosuppressed mice induced by cyclophosphamide (Cy). Methods Mice were given RDAEB through stomach perfusion for 10 d (50 mg/d). Then, RBC-C3bR rate,RBC-IC rate (as the index- es of erythrocyte immunity)and E-rosette forming rate,acidic a-naphthyl acetate esterase positive rate, lymphocyte transformation rate (as the indexes of cellular immunity) of mice were tested. Results RBC-C3Br rate, RBC-IC rat- e,E-rosette forming rate, acidic α-naphthyl acetate esterase positive rate and lymphocyte transformation rate in the Cy-RDAEB group were markedly higher than those in the Cy group (P<0.0l),and returned to the levels of normal group. Conclusion RDAEB is effective in recovering and enhancing cellular and erythrocyte immunity of immuno- suppressed mice.展开更多
Background: Angelicae sinensis radix has been widely applied in traditional Chinese medicine while little isexplored in its potential mechanism. This study aims to elucidate the effective components and defattingmecha...Background: Angelicae sinensis radix has been widely applied in traditional Chinese medicine while little isexplored in its potential mechanism. This study aims to elucidate the effective components and defattingmechanism based on network pharmacology. Methods: Traditional Chinese Medicine Systems PharmacologyDatabase and Analysis Platform was screened to collect the possible active ingredients and their CAS and SMILESwas searched in Pubchem, which further used for reverse molecular docking in Swiss Target Prediction database toobtain potential targets. Hyperlipidemia-related molecules were obtained from GeneCards database, and thepredicted targets of Angelicae sinensis radix for hyperlipidemia treatment were selected by Wayne diagram. Formechanism analysis, the protein-protein interactions were constructed with String, the Gene Oncology enrichmentanalysis and Kyoto Encyclopedia of Genes and Genomes analysis were conducted in DAVID. Results: Usingnetwork-based systems biology analysis, we predicted that 5 active ingredients in Angelicae sinensis radix hasantilipemic effects with 71 potential targets. Through Gene Oncology and Kyoto Encyclopedia of Genes andGenomes analysis, we found that the related signaling pathways mainly involved in arachidonic acid metabolism,and regulation of lipolysis in adipocytes. The related genes are ALOX5, CYP2C19, EPHX2, PTGS1, PTGS2,ADRB1, and ADRB3. Conclusion: Angelicae sinensis radix may alleviate hyperlipidemia through arachidonic acidmetabolism, and regulation of lipolysis in adipocytes. ALOX5, CYP2C19, EPHX2, PTGS1, PTGS2, ADRB1, andADRB3 may be new targets for treatment.展开更多
Idiopathic pulmonary fibrosis(IPF)is a chronic,progressive,fibrotic interstitial lung disease.Current treatment options for IPF are limited.Radix Astragali(RA)and Radix Angelicae Sinensis(RAS),according to 5:1 ratio c...Idiopathic pulmonary fibrosis(IPF)is a chronic,progressive,fibrotic interstitial lung disease.Current treatment options for IPF are limited.Radix Astragali(RA)and Radix Angelicae Sinensis(RAS),according to 5:1 ratio composed of Danggui Buxue decoction(DGBXD),which have played an essential role in the treatment of IPF.This article reviewed the experimental research,clinical research,and progress of RA and RAS(DGBXD)treating IPF to provide a deeper scientific basis for the future experimental research and clinical research.展开更多
Objective:Using network pharmacology and molecular docking technology to explore the possible mechanism of Huangqi(Astragali radix)-Danggui(Angelicae sinensis radix)on the treatment of spinal cord injury.Methods:The a...Objective:Using network pharmacology and molecular docking technology to explore the possible mechanism of Huangqi(Astragali radix)-Danggui(Angelicae sinensis radix)on the treatment of spinal cord injury.Methods:The active components and the targets related to Astragali radix-Angelicae sinensis radix were screened out on the Traditional Chinese Medicine Systems Pharmacology database.Genes of spinal cord injury were searched by Genecards and the Online Mendelian Inheritance in Man databases.The intersection targets between herbs and diseases were obtained through online Venn diagrams.A components-targets-pathways network was established on Cytoscape 3.8.1 software.The STRING database was used to construct the intersection protein interaction network and screen out core targets.Gene Ontology biological processes and enrichment analysis based on the Kyoto Encyclopedia of Genes and Genes of intersection proteins were performed via DAVID database.Finally,the molecular docking with key components and core targets were performed in AutoDock software.Results:The 22 chemical components including quercetin,kaempferol were collected from Astragali radix-Angelicae sinensis radix.It acts on 110 targets,and interleukin-6,tumor necrosis factor,mitogen-activated protein kinase,tumor antigen p53 were considered as the major targets.50 pathways like Interleukin-17 signaling pathway,tumor necrosis factor signaling pathway and mitogen-activated protein kinase signaling pathway participate in biological processes such as positive transcription regulation and lipopolysacchanide response.The molecular docking revealed that the core targets had stronger binding activity with its corresponding active components.Conclusion:Astragali radix-Angelicae sinensis radix has the characteristics of multi-component,multi-target,and multi-pathway effects in treating spinal cord injury.Its potential mechanism may be related to preventing inflammation,improving microcirculation,inhibiting neuronal apoptosis,protecting damaged nerve cells and promoting nerve repair and regeneration.展开更多
Background:Traditional Chinese medicine(TCM)has been shown to be effective in treating ischemic stroke(IS),and the combination of Angelicae Sinensis Radix(ASR)and Astragali Radix(AR)is a core TCM prescription that is ...Background:Traditional Chinese medicine(TCM)has been shown to be effective in treating ischemic stroke(IS),and the combination of Angelicae Sinensis Radix(ASR)and Astragali Radix(AR)is a core TCM prescription that is widely acknowledged for its efficacy in IS treatment.This study utilized network pharmacology methods to explore the molecular mechanisms underlying the therapeutic effects of Angelicae Sinensis Radix and Astragali Radix in IS treatment,with preliminary validation conducted through molecular docking.Methods:Information on the structure,targets,main biological functions,and pathways of the active components in Angelicae Sinensis Radix and Astragali Radix was collected using databases such as PubChem,PharmMapper,UniProt,and GeneCards.The results were visualized using software such as Cytoscape 3.6.1,Ledock,and pymol.Results:We retrieved 20 active components and 149 targets associated with the compatibility of Angelicae Sinensis Radix and Astragali Radix from various databases,and GeneCards database was used to search 3350 IS-related gene targets,including 78 key targets of Angelicae Sinensis Radix and Astragali Radix for the treatment of IS.Enrichment analysis of these 78 targets using gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)revealed the involvement of 48 GO terms in the treatment of IS,mainly in biological processes such as metabolism,biological regulation,and stress response.The composition of biological devices such as supercavitary membrane,cell fluid,and extracellular space was also involved.The biological functions mainly included protein binding,ion binding,hydrolytic enzyme activity,and others.The identified pathways were estrogen signaling pathway,mitogen-activated protein kinase(MAPK)signaling pathway,PI3K-AKT signaling pathway,RAP1 signaling pathway,P53 signaling pathway,PPAR signaling pathway,FOXO signaling pathway,RAS signaling pathway,prolactin signaling pathway,HIF-1 signaling pathway,and TNF signaling pathway.Molecular docking analysis showed that the 17 key active components of Angelicae Sinensis Radix and Astragali Radix had strong binding activity with 13 IS key targets.Conclusion:Through the application of network pharmacology methods,it was found that the use of Angelicae Sinensis Radix and Astragali Radix for treating ischemic stroke mainly targets the MAPK and PI3K-AKT signaling pathways,involving several crucial compounds and genes.Nevertheless,additional in vitro and in vivo studies are needed to verify these findings.展开更多
Angelicae Sinensis Radix(Danggui)and Ligusticum Chuanxiong Rhizoma(Chuan Xiong)herb-pair(DC)have been frequently used in Traditional Chinese medicine(TCM)prescriptions for hundreds of years to prevent vascular disease...Angelicae Sinensis Radix(Danggui)and Ligusticum Chuanxiong Rhizoma(Chuan Xiong)herb-pair(DC)have been frequently used in Traditional Chinese medicine(TCM)prescriptions for hundreds of years to prevent vascular diseases and alleviate pain.However,the mechanism of DC herb-pair in the prevention of liver fibrosis development was still unclear.In the present study,the effects and mechanisms of DC herb-pair on liver fibrosis were examined using network pharmacology and mouse fibrotic model.Based on the network pharmacological analysis of 13 bioactive ingredients found in DC,a total of 46 targets and 71 pathways related to anti-fibrosis effects were obtained,which was associated with mitogen-activated protein kinase(MAPK)signal pathway,hepatic inflammation and fibrotic response.Furthermore,this hypothesis was verified using carbon tetrachloride(CCl_4)-induced fibrosis model.Measurement of liver functional enzyme activities and histopathological examination showed that DC dramatically reduced bile acid levels,inflammatory cell infiltration and collagen deposition caused by CCl_4.The increased expression of liver fibrosis markers,such as collagen 1,fibronectin,α-smooth muscle actin(α-SMA)and transforming growth factor-β(TGF-β),and inflammatory factors,such as chemokine(C-C motif)ligand 2(MCP-1),interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α)and IL-6 in fibrotic mice were significantly downregulated by DC herb-pair through regulation of extracellular signal-regulated kinase 1/2(ERK1/2)-protein kinase B(AKT)signaling pathways.Collectively,these results suggest that DC prevents the development of liver fibrosis by inhibiting collagen deposition,decreasing inflammatory reactions and bile acid accumulation,which provides insights into the mechanisms of herbpair in improving liver fibrosis.展开更多
Angelicae Sinensis Radix(AS)is reproted to exert anti-depression effect(ADE)and nourishing blood effect(NBE)in a rat model of depression.The correlation between the two therapeutic effects and its underlying mechanism...Angelicae Sinensis Radix(AS)is reproted to exert anti-depression effect(ADE)and nourishing blood effect(NBE)in a rat model of depression.The correlation between the two therapeutic effects and its underlying mechanisms deserves further study.The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics,network pharmacology and molecular docking.According to metabolomics analysis,30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression.Furthermore,principal component analysis and correlation analysis showed that glutathione,sphinganine,and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators,indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS.Then,a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis,where a total of 107 pathways were collected.Moreover,37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer(UPLC-Triple-TOF/MS)in AS extract that passed the filtering criteria were used for network pharmacology,where 46 targets were associated with the ADE and NBE of AS.Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS.Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins(PIK3CA and PIK3CD)in sphingolipid metabolism.Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism.Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.展开更多
The present study aimed at exploring different roles of the same compound in different environment, using preparative HPLC, and the significance to investigating bio-active constituents in traditional Chinese medicine...The present study aimed at exploring different roles of the same compound in different environment, using preparative HPLC, and the significance to investigating bio-active constituents in traditional Chinese medicine (TCM) on the basis of holism. In this study, the depletion of target component ferulic acid (FA) by using preparative HPLC followed by antioxidant activity testing was applied to investigate the roles of FA in Angelicae Sinansis Radix (DG), Chuanxiong Rhizoma (CX) and their combination (GX). The antioxidant activity was performed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity testing. FA was successfully and exclusively depleted from DG, CX, and GX, respectively. By comparing the effects of the samples, it was found that FA was one of the main antioxidant constituents in DG, CX and GX, and the roles of FA were DG 〉 CX 〉 GX. Furthermore, the effects of FA varied at different doses in these herbs. This study provided a reliable and effective approach to clarifying the contribution of same compound in different TCMs to their bio-activities. The role of a constituent in different TCMs might be different, and a component with the same content might have different effects in different chemical environments. Furthermore, this study also suggested the potential utilization of preparative HPLC in the characterization of the roles of multi-ingredients in TCM.展开更多
Aim A reliable and rapid HPLC method was developed for quantitative determination of coniferyl femlate, an ester of ferulic acid, with multiple pharmacological activities in Angelica sinensis and Ligusticum chuanxiong...Aim A reliable and rapid HPLC method was developed for quantitative determination of coniferyl femlate, an ester of ferulic acid, with multiple pharmacological activities in Angelica sinensis and Ligusticum chuanxiong, two commonly used Chinese medicines. Methods The determination was achieved by using a Zorbax ODS C18 analytical column (250 mm×4.6 mm ID, 5 μm) at isocratic elution of 1% aqueous acetic acid and acetonitrile (1:1) with diode-array detection (318 nm). The calibration curve of coniferyl femlate showed good linearity (r^2 = 0.9995) within the test range. Results The developed method showed good precision with intra- and inter-day variations of 0.22% - 1.16% and 0.86% - 2.62% between the levels of 0.380 - 0.038 mg·mL^-1, respectively. The repeatability represented as RSD of coniferyl femlate was less than 2.7% for three levels (0.2 - 1.0 g of Angelica sinensis), and the recovery was 105.3% with RSD of 3.2%. Conclusion The validated method was successfully applied to quantify coniferyl femlate in 12 samples of Danggui and Chuanxiong.展开更多
Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient...Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.展开更多
Aim To investigate the active constituents responsible for thepharmacological activities of Angelica sinensis (Oliv) Diels. Methods Chromatography was used toisolate chemical components, and spectroscopy was used to i...Aim To investigate the active constituents responsible for thepharmacological activities of Angelica sinensis (Oliv) Diels. Methods Chromatography was used toisolate chemical components, and spectroscopy was used to identify their structures. Results Sevencompounds were isolated and their structures were identified as ferulic acid (1), conife-rylferukte(2) , bis (2-ethylhexyl) phthalate (3), dibutyl phthalate (4), lignoceric acid (5), palmitic acid(6), and Z-6, 7-cis-dihydroxyligustilide (7) Conclusion Bis (2-ethylhexyl) phthalate and dibutylphthalate were obtained from Angelica sinensis for the first time.展开更多
To investigate the therapeutic effects of angelica sinensis polysaccharide-iron complex (APIC) on hemolytic anemia and bone marrow injury in mice models. The hemolytic anemia mouse model was established by i.p. of p...To investigate the therapeutic effects of angelica sinensis polysaccharide-iron complex (APIC) on hemolytic anemia and bone marrow injury in mice models. The hemolytic anemia mouse model was established by i.p. of phenylhydrazine (PHZ). Changes of the indices including red blood cell count (RBC), hemoglobin (Hb) and hematocrit (HCT) were determined by blood analyzer, and reticulocytes were observed by brilliant cresol blue staining during administration. Bone marrow injured mouse model was established by i.p. of cytoxan (CY) and chloramphenicol (CH), and the therapeutic effect was observed by H-E staining. The indices of APIC treated groups with the medium and high doses were higher than those of the model group significantly. Moreover, the Hb and HCT were restored to the normal level after drug treatments. In addition, APIC can promote the proliferation and differentiation of reticulocytes obviously in the early stage of anemia mice, decrease adipose cell proliferation in bone marrow of injured mice and hasten the recuperation. In conclusion, APIC has therapeutic efficacy on hemolytic anemia and bone marrow injury caused by chemicals, which is reported for the first time.展开更多
Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a pre-liminary experiment,...Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a pre-liminary experiment, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H202-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H202 treatment. In a rat model of local cerebral ischemia, we further demonstrated that Angelica sinensis poly-saccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia. Our findings highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress.展开更多
The antinlammatory and antianemic activities of Angelica sinensis polysaccharide(ASP)isolated from roots of Angelica sinensis(AS)was investigated in a complete Freund's adjuvant(CFA)-induced arthritic rat model.It...The antinlammatory and antianemic activities of Angelica sinensis polysaccharide(ASP)isolated from roots of Angelica sinensis(AS)was investigated in a complete Freund's adjuvant(CFA)-induced arthritic rat model.It was observed that serum iron(SI)and total iron binding capacity(TIBC)levels were elevated after 4-week oral administration of ASP.Red blood cell(RBC)count and hemoglobin(Hb)concentrations were ameliorated as well.Moreover,infammatory cytokines IL-6 and TNF-a were decreased strikingly in CFA-induced arthritic rats after treatment of ASP.Evidence also showed that ASP strongly inhibited hepcidin expression through the Janus kinase/signal transducers and activators of transcription(JAK2/STAT3)pathway.Furthermore,ASP exhibited reduced primary and secondary lesions in adjuvant arthritis,attenuating synovitis and inflammatory joint damage.Data presented in this article collectively indicated that ASP significantly decreased proinflammatory cytokines(TNF-a,IL-6),which might play a crucial role in the CFA-induced arthritic rats,and had a therapeutic effect on adjuvant arthritis in rats.Results of Western blot analysis indicated that ASP inhibited the activation of IL-6/JAK2/STAT3 signaling pathway in the CFA-induced arthritic rats.展开更多
Gas chromatographymass spectrometry (GC-MS) coupled with chemometric resolution upon two- dimensional data was employed to analyze the constituents of essential oils of Angelica sinensis. Constituents in essential oil...Gas chromatographymass spectrometry (GC-MS) coupled with chemometric resolution upon two- dimensional data was employed to analyze the constituents of essential oils of Angelica sinensis. Constituents in essential oils of Angelica sinensis root were identified by GC-MS with the help of subwindow factor analysis (SFA) method resolving two-dimensional original data into mass spectra and chromatograms. 76 of 97 separated constituents in essential oil of Angelica sinensis root were identified and quantified, and they account for about 91.36% of the total content. The results show that ligustilide, butylene phthalide, 2-methoxy-4-vinylphenol, carvacrol, allo-ocimene,2,6,6-trimethylbicyclo-[3,1,1]hept-2-ene are the main constituents in essential oil of Angelica sinensis root.展开更多
BACKGROUND: The enhanced expression of c-Fos protein in nerve cells after hypoxia is the marker for converting extracellular hypoxia information to intracellular changes at hypoxia, and it is suspected that the incre...BACKGROUND: The enhanced expression of c-Fos protein in nerve cells after hypoxia is the marker for converting extracellular hypoxia information to intracellular changes at hypoxia, and it is suspected that the increase of c-Fos protein can lead to the synthesis and excretion of related neurotrophic factor and nerve growth factor. However, it is still unclear what functional changes of nerve cells are induced by the increase of c-Fos protein at hypoxia, and whether it is good for the survival of damaged neurons. OBJECTIVE: To observe the expression of c-Fos in the cerebral neurons from embryos of rats with hypoxia in uterus, and investigate the pathway for the protective effect of Angelica sinensis injection on the cerebral neurons from rat embryos under hypoxia. DESIGN: A completely randomized controlled study. SETTING: Department of Histology and Embryology, Luzhou Medical College. MATERIALS: Twelve female Wistar rats in oestrum and 1 male adult Wistar rat with body mass of 220 to 250 g were selected. Rabbit-anti-rat neuro-specific enolase (NSE) and rabbit-anti-rat c-Fos were purchased from Wuhan Boster Biological Technology Co., Ltd.; Double-staining kit was bought from Beijing Zhongshan Golden Bridge Biotechnology Co., Ltd. Angelica sinensis injection was produced by the Department of Pharmacy, the Second Affiliated Hospital of Hubei Medical University. METHODS: The experiments were completed in the experimental animal center and the Department of Histology and Embryology of Luzhou Medical College from December 2004 to December 2005. ①Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. The appearance of vaginal embolus at 8:00 in the next morning was recorded as 0 day of pregnancy and the rats were recorded for 15 days, and they were divided randomly into three groups, control group (n =4), hypoxia group (n =4) and Angelica group (n =4). The pregnant rats in the hypoxia group were firstly injected with saline (8 mL/kg), then put into 2 L wide-mouthed bottle containing 100 g sodalime, and then the lid of the bottle was closed tightly to induce hypotonic hypoxia for 1 hour followed by 1-hour re-oxygenation. The pregnant rats were killed under anesthesia, and then fetuses were taken out by rapid cesarean. Part of the brain tissues were exposed and then fixed in formaldehyde (40 g/L). The pregnant rats in the Angelica group were treated the same as those in the hypoxia group except that saline was replaced by 250 g/L Angelica sinensis injection which was injected via caudal vein (8 mL/kg). The rats in the control group were injected with saline (8 mL/kg) slowly via caudal vein, but not put into the wide-mouthed bottle for hypoxia, and then the brain tissues were removed and fixed as those in the hypoxia group after 1 hour. ②Twenty embryos from rats were chosen randomly in each group and then routinely embedded in paraffin. Paraffin sections of 4 μ m thick were prepared through the anterior fontanelle of head of the fetal rats. The sections were immunohistologically stained with c-Fos/NSE. ③The one-way analysis of variance (ANOVA) was used to compare the differences of measurement data among the groups, and the q test was applied in the two-two comparison. MAIN OUTCOME MEASURES: The numbers of c-Fos and c-Fos/NSE positive neurons in cerebrum from rat embryos were observed. RESULTS: ① Numbers of NSE positive neurons in cerebrum of rat embryos in the control group, hypoxia group and Angelica group were (84.3 ±9.0), (90.2±12.5) and (86.7±9.7) cells/high power field (P 〉 0.05). ②The number of c-Fos/NSE positive neurons was more in the hypoxia group than in the control group and Angelica group [(38.4±5.28), (11.35±2.67), (20.65±4.07) cells/high power field, q =29.17, 19.14, P 〈 0.05]. CONCLUSION: Hypoxia can stimulate the expression of c-Fos in cerebral neurons from rat embryos. Angelica sinensis injection could reducing the damage of hypoxia to neurons and play a neuroprotective role by decreasing the expression of c-Fos protein in hypoxic neurons.展开更多
Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chlor...Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chloride solution to the ASP solution. Then some identifiable properties of the complex were studied. The content of iron( Ⅲ ) in the complex was determined with iodometry. The thermal property, the microscopic structure, the spectral characteristics, and N, C, H contents of the complex were examined by a variety of techniques including DSC, TEM, IR, NMR, and elemental analysis. The content of iron( Ⅲ ) in the complex ranges from 10% to 40%. The DSC result shows that the melting point of the complex is about 450 ℃. The TEM result shows that the complex has an iron( Ⅲ ) core(β-FeOOH core) linked by hydroxy and oxy bridges, with the polysaccharide chains attached to the surface of the core. The IR and NMR results also show that there is a β-FeOOH core in the complex. The elemental analysis shows that the contents of N, C, H in the complex are, respectively, lower than those of N, C, H in ASP. All our studies indicate that the APC consists of a β-FeOOH core surrounded by ASP.展开更多
A new dimeric phthalide named Z, Z'-3.3'a, 7.7'a-diligustilide was isolated from the roots of Angelica sinensis. Its structure was determined using spectroscopic methods and X-ray crystallographic diffraction analy...A new dimeric phthalide named Z, Z'-3.3'a, 7.7'a-diligustilide was isolated from the roots of Angelica sinensis. Its structure was determined using spectroscopic methods and X-ray crystallographic diffraction analysis.展开更多
Objective:Angelica(A.)sinensis is used as a traditional medical herb for the treatment of neurodegeneration,aging,and inflammation in Asia.A.sinensis optimal formula(AOF)is the best combination in A.sinensis that has ...Objective:Angelica(A.)sinensis is used as a traditional medical herb for the treatment of neurodegeneration,aging,and inflammation in Asia.A.sinensis optimal formula(AOF)is the best combination in A.sinensis that has been screened to rescue the cognitive ability in P-amyloid peptide(Ap25-35)-treated Alzheimer’s disease(AD)rats.The objective of this study was to investigate the effect of AOF on the learning and memory of AD rats as well as to explore the underlying mechanisms.展开更多
基金financially supported by the Science and Technology Project of Sichuan Province,No.2009JY0128the Health Ministry of Sichuan Province in China,No.20060052
文摘Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10% Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Sinensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in- ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani- sole-induced group, and the expression of glial fibrillary acidic protein was negative. Alter they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem cell differentiation into neuron-like cells and produce less cytotoxicity.
文摘Objective To investigate the effect of reinforced Decoction of Angelicae Sinensis for enriching blood (RDAEB) on the immunity of immunosuppressed mice induced by cyclophosphamide (Cy). Methods Mice were given RDAEB through stomach perfusion for 10 d (50 mg/d). Then, RBC-C3bR rate,RBC-IC rate (as the index- es of erythrocyte immunity)and E-rosette forming rate,acidic a-naphthyl acetate esterase positive rate, lymphocyte transformation rate (as the indexes of cellular immunity) of mice were tested. Results RBC-C3Br rate, RBC-IC rat- e,E-rosette forming rate, acidic α-naphthyl acetate esterase positive rate and lymphocyte transformation rate in the Cy-RDAEB group were markedly higher than those in the Cy group (P<0.0l),and returned to the levels of normal group. Conclusion RDAEB is effective in recovering and enhancing cellular and erythrocyte immunity of immuno- suppressed mice.
文摘Background: Angelicae sinensis radix has been widely applied in traditional Chinese medicine while little isexplored in its potential mechanism. This study aims to elucidate the effective components and defattingmechanism based on network pharmacology. Methods: Traditional Chinese Medicine Systems PharmacologyDatabase and Analysis Platform was screened to collect the possible active ingredients and their CAS and SMILESwas searched in Pubchem, which further used for reverse molecular docking in Swiss Target Prediction database toobtain potential targets. Hyperlipidemia-related molecules were obtained from GeneCards database, and thepredicted targets of Angelicae sinensis radix for hyperlipidemia treatment were selected by Wayne diagram. Formechanism analysis, the protein-protein interactions were constructed with String, the Gene Oncology enrichmentanalysis and Kyoto Encyclopedia of Genes and Genomes analysis were conducted in DAVID. Results: Usingnetwork-based systems biology analysis, we predicted that 5 active ingredients in Angelicae sinensis radix hasantilipemic effects with 71 potential targets. Through Gene Oncology and Kyoto Encyclopedia of Genes andGenomes analysis, we found that the related signaling pathways mainly involved in arachidonic acid metabolism,and regulation of lipolysis in adipocytes. The related genes are ALOX5, CYP2C19, EPHX2, PTGS1, PTGS2,ADRB1, and ADRB3. Conclusion: Angelicae sinensis radix may alleviate hyperlipidemia through arachidonic acidmetabolism, and regulation of lipolysis in adipocytes. ALOX5, CYP2C19, EPHX2, PTGS1, PTGS2, ADRB1, andADRB3 may be new targets for treatment.
基金Jiangyin Hospital of Traditional Chinese Medicine(202014 to YF Zhang)Grants from the Wuxi Health Commission’s Scientific Research Project(M202154 to YF Zhang)。
文摘Idiopathic pulmonary fibrosis(IPF)is a chronic,progressive,fibrotic interstitial lung disease.Current treatment options for IPF are limited.Radix Astragali(RA)and Radix Angelicae Sinensis(RAS),according to 5:1 ratio composed of Danggui Buxue decoction(DGBXD),which have played an essential role in the treatment of IPF.This article reviewed the experimental research,clinical research,and progress of RA and RAS(DGBXD)treating IPF to provide a deeper scientific basis for the future experimental research and clinical research.
基金This study was supported by the Traditional Chinese Medicine Research Project of Hubei Provincial Health Commission No.ZY 2021F016Hubei University of Chinese Medicine's“Young Miao Program”project in 2019 No.2019ZZX032.
文摘Objective:Using network pharmacology and molecular docking technology to explore the possible mechanism of Huangqi(Astragali radix)-Danggui(Angelicae sinensis radix)on the treatment of spinal cord injury.Methods:The active components and the targets related to Astragali radix-Angelicae sinensis radix were screened out on the Traditional Chinese Medicine Systems Pharmacology database.Genes of spinal cord injury were searched by Genecards and the Online Mendelian Inheritance in Man databases.The intersection targets between herbs and diseases were obtained through online Venn diagrams.A components-targets-pathways network was established on Cytoscape 3.8.1 software.The STRING database was used to construct the intersection protein interaction network and screen out core targets.Gene Ontology biological processes and enrichment analysis based on the Kyoto Encyclopedia of Genes and Genes of intersection proteins were performed via DAVID database.Finally,the molecular docking with key components and core targets were performed in AutoDock software.Results:The 22 chemical components including quercetin,kaempferol were collected from Astragali radix-Angelicae sinensis radix.It acts on 110 targets,and interleukin-6,tumor necrosis factor,mitogen-activated protein kinase,tumor antigen p53 were considered as the major targets.50 pathways like Interleukin-17 signaling pathway,tumor necrosis factor signaling pathway and mitogen-activated protein kinase signaling pathway participate in biological processes such as positive transcription regulation and lipopolysacchanide response.The molecular docking revealed that the core targets had stronger binding activity with its corresponding active components.Conclusion:Astragali radix-Angelicae sinensis radix has the characteristics of multi-component,multi-target,and multi-pathway effects in treating spinal cord injury.Its potential mechanism may be related to preventing inflammation,improving microcirculation,inhibiting neuronal apoptosis,protecting damaged nerve cells and promoting nerve repair and regeneration.
基金funded by the Natural Science Foundation of China(No.81874416)Science,Technology Innovation Team Project of Hunan(No.2020RC4050).
文摘Background:Traditional Chinese medicine(TCM)has been shown to be effective in treating ischemic stroke(IS),and the combination of Angelicae Sinensis Radix(ASR)and Astragali Radix(AR)is a core TCM prescription that is widely acknowledged for its efficacy in IS treatment.This study utilized network pharmacology methods to explore the molecular mechanisms underlying the therapeutic effects of Angelicae Sinensis Radix and Astragali Radix in IS treatment,with preliminary validation conducted through molecular docking.Methods:Information on the structure,targets,main biological functions,and pathways of the active components in Angelicae Sinensis Radix and Astragali Radix was collected using databases such as PubChem,PharmMapper,UniProt,and GeneCards.The results were visualized using software such as Cytoscape 3.6.1,Ledock,and pymol.Results:We retrieved 20 active components and 149 targets associated with the compatibility of Angelicae Sinensis Radix and Astragali Radix from various databases,and GeneCards database was used to search 3350 IS-related gene targets,including 78 key targets of Angelicae Sinensis Radix and Astragali Radix for the treatment of IS.Enrichment analysis of these 78 targets using gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)revealed the involvement of 48 GO terms in the treatment of IS,mainly in biological processes such as metabolism,biological regulation,and stress response.The composition of biological devices such as supercavitary membrane,cell fluid,and extracellular space was also involved.The biological functions mainly included protein binding,ion binding,hydrolytic enzyme activity,and others.The identified pathways were estrogen signaling pathway,mitogen-activated protein kinase(MAPK)signaling pathway,PI3K-AKT signaling pathway,RAP1 signaling pathway,P53 signaling pathway,PPAR signaling pathway,FOXO signaling pathway,RAS signaling pathway,prolactin signaling pathway,HIF-1 signaling pathway,and TNF signaling pathway.Molecular docking analysis showed that the 17 key active components of Angelicae Sinensis Radix and Astragali Radix had strong binding activity with 13 IS key targets.Conclusion:Through the application of network pharmacology methods,it was found that the use of Angelicae Sinensis Radix and Astragali Radix for treating ischemic stroke mainly targets the MAPK and PI3K-AKT signaling pathways,involving several crucial compounds and genes.Nevertheless,additional in vitro and in vivo studies are needed to verify these findings.
基金the National Natural Science Foundation of China(No.82004045)the Beijing Nova Program of Science and Technology(No.Z191100001119088)the Beijing University of Chinese Medicine Specific Grant for“Double Top Construction”(No.1000041510168)。
文摘Angelicae Sinensis Radix(Danggui)and Ligusticum Chuanxiong Rhizoma(Chuan Xiong)herb-pair(DC)have been frequently used in Traditional Chinese medicine(TCM)prescriptions for hundreds of years to prevent vascular diseases and alleviate pain.However,the mechanism of DC herb-pair in the prevention of liver fibrosis development was still unclear.In the present study,the effects and mechanisms of DC herb-pair on liver fibrosis were examined using network pharmacology and mouse fibrotic model.Based on the network pharmacological analysis of 13 bioactive ingredients found in DC,a total of 46 targets and 71 pathways related to anti-fibrosis effects were obtained,which was associated with mitogen-activated protein kinase(MAPK)signal pathway,hepatic inflammation and fibrotic response.Furthermore,this hypothesis was verified using carbon tetrachloride(CCl_4)-induced fibrosis model.Measurement of liver functional enzyme activities and histopathological examination showed that DC dramatically reduced bile acid levels,inflammatory cell infiltration and collagen deposition caused by CCl_4.The increased expression of liver fibrosis markers,such as collagen 1,fibronectin,α-smooth muscle actin(α-SMA)and transforming growth factor-β(TGF-β),and inflammatory factors,such as chemokine(C-C motif)ligand 2(MCP-1),interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α)and IL-6 in fibrotic mice were significantly downregulated by DC herb-pair through regulation of extracellular signal-regulated kinase 1/2(ERK1/2)-protein kinase B(AKT)signaling pathways.Collectively,these results suggest that DC prevents the development of liver fibrosis by inhibiting collagen deposition,decreasing inflammatory reactions and bile acid accumulation,which provides insights into the mechanisms of herbpair in improving liver fibrosis.
基金the National Nature Science Foundation of China(No.82004502)the Youth Science and Technology Research Fund of Shanxi Province(No.201901D211138)+1 种基金the National S&T Major Projects for“Major New Drugs Innovation and Development”(No.2017ZX09301047)the Key R&D Project of Shanxi Province(No.202102130501010).
文摘Angelicae Sinensis Radix(AS)is reproted to exert anti-depression effect(ADE)and nourishing blood effect(NBE)in a rat model of depression.The correlation between the two therapeutic effects and its underlying mechanisms deserves further study.The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics,network pharmacology and molecular docking.According to metabolomics analysis,30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression.Furthermore,principal component analysis and correlation analysis showed that glutathione,sphinganine,and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators,indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS.Then,a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis,where a total of 107 pathways were collected.Moreover,37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer(UPLC-Triple-TOF/MS)in AS extract that passed the filtering criteria were used for network pharmacology,where 46 targets were associated with the ADE and NBE of AS.Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS.Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins(PIK3CA and PIK3CD)in sphingolipid metabolism.Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism.Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.
基金supported by National Key Technology R&D Program(No.2008BAI51B01)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20113237110010)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The present study aimed at exploring different roles of the same compound in different environment, using preparative HPLC, and the significance to investigating bio-active constituents in traditional Chinese medicine (TCM) on the basis of holism. In this study, the depletion of target component ferulic acid (FA) by using preparative HPLC followed by antioxidant activity testing was applied to investigate the roles of FA in Angelicae Sinansis Radix (DG), Chuanxiong Rhizoma (CX) and their combination (GX). The antioxidant activity was performed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity testing. FA was successfully and exclusively depleted from DG, CX, and GX, respectively. By comparing the effects of the samples, it was found that FA was one of the main antioxidant constituents in DG, CX and GX, and the roles of FA were DG 〉 CX 〉 GX. Furthermore, the effects of FA varied at different doses in these herbs. This study provided a reliable and effective approach to clarifying the contribution of same compound in different TCMs to their bio-activities. The role of a constituent in different TCMs might be different, and a component with the same content might have different effects in different chemical environments. Furthermore, this study also suggested the potential utilization of preparative HPLC in the characterization of the roles of multi-ingredients in TCM.
基金Macao Science and Technology Development Fund(049/2005/A-R1) Jiangsu Key Laboratory for TCM FormulaeResearch, Nanjing University of Traditional Chinese Medicine (No.022021014003).
文摘Aim A reliable and rapid HPLC method was developed for quantitative determination of coniferyl femlate, an ester of ferulic acid, with multiple pharmacological activities in Angelica sinensis and Ligusticum chuanxiong, two commonly used Chinese medicines. Methods The determination was achieved by using a Zorbax ODS C18 analytical column (250 mm×4.6 mm ID, 5 μm) at isocratic elution of 1% aqueous acetic acid and acetonitrile (1:1) with diode-array detection (318 nm). The calibration curve of coniferyl femlate showed good linearity (r^2 = 0.9995) within the test range. Results The developed method showed good precision with intra- and inter-day variations of 0.22% - 1.16% and 0.86% - 2.62% between the levels of 0.380 - 0.038 mg·mL^-1, respectively. The repeatability represented as RSD of coniferyl femlate was less than 2.7% for three levels (0.2 - 1.0 g of Angelica sinensis), and the recovery was 105.3% with RSD of 3.2%. Conclusion The validated method was successfully applied to quantify coniferyl femlate in 12 samples of Danggui and Chuanxiong.
基金National Natural Science Foundation of China(81903934) Tianjin Health Science and Technology Project(ZC20205).
文摘Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.
文摘Aim To investigate the active constituents responsible for thepharmacological activities of Angelica sinensis (Oliv) Diels. Methods Chromatography was used toisolate chemical components, and spectroscopy was used to identify their structures. Results Sevencompounds were isolated and their structures were identified as ferulic acid (1), conife-rylferukte(2) , bis (2-ethylhexyl) phthalate (3), dibutyl phthalate (4), lignoceric acid (5), palmitic acid(6), and Z-6, 7-cis-dihydroxyligustilide (7) Conclusion Bis (2-ethylhexyl) phthalate and dibutylphthalate were obtained from Angelica sinensis for the first time.
基金Foundation of Science and Technology Department of Hubei Province(Grant No.2005AA301C04)
文摘To investigate the therapeutic effects of angelica sinensis polysaccharide-iron complex (APIC) on hemolytic anemia and bone marrow injury in mice models. The hemolytic anemia mouse model was established by i.p. of phenylhydrazine (PHZ). Changes of the indices including red blood cell count (RBC), hemoglobin (Hb) and hematocrit (HCT) were determined by blood analyzer, and reticulocytes were observed by brilliant cresol blue staining during administration. Bone marrow injured mouse model was established by i.p. of cytoxan (CY) and chloramphenicol (CH), and the therapeutic effect was observed by H-E staining. The indices of APIC treated groups with the medium and high doses were higher than those of the model group significantly. Moreover, the Hb and HCT were restored to the normal level after drug treatments. In addition, APIC can promote the proliferation and differentiation of reticulocytes obviously in the early stage of anemia mice, decrease adipose cell proliferation in bone marrow of injured mice and hasten the recuperation. In conclusion, APIC has therapeutic efficacy on hemolytic anemia and bone marrow injury caused by chemicals, which is reported for the first time.
基金the National Natural Science Foundation of China,No.81072917 and 81274048
文摘Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a pre-liminary experiment, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H202-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H202 treatment. In a rat model of local cerebral ischemia, we further demonstrated that Angelica sinensis poly-saccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia. Our findings highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress.
基金This project was supported by Natural Science Foundation of Hubei Province(No.2018CFB488).
文摘The antinlammatory and antianemic activities of Angelica sinensis polysaccharide(ASP)isolated from roots of Angelica sinensis(AS)was investigated in a complete Freund's adjuvant(CFA)-induced arthritic rat model.It was observed that serum iron(SI)and total iron binding capacity(TIBC)levels were elevated after 4-week oral administration of ASP.Red blood cell(RBC)count and hemoglobin(Hb)concentrations were ameliorated as well.Moreover,infammatory cytokines IL-6 and TNF-a were decreased strikingly in CFA-induced arthritic rats after treatment of ASP.Evidence also showed that ASP strongly inhibited hepcidin expression through the Janus kinase/signal transducers and activators of transcription(JAK2/STAT3)pathway.Furthermore,ASP exhibited reduced primary and secondary lesions in adjuvant arthritis,attenuating synovitis and inflammatory joint damage.Data presented in this article collectively indicated that ASP significantly decreased proinflammatory cytokines(TNF-a,IL-6),which might play a crucial role in the CFA-induced arthritic rats,and had a therapeutic effect on adjuvant arthritis in rats.Results of Western blot analysis indicated that ASP inhibited the activation of IL-6/JAK2/STAT3 signaling pathway in the CFA-induced arthritic rats.
文摘Gas chromatographymass spectrometry (GC-MS) coupled with chemometric resolution upon two- dimensional data was employed to analyze the constituents of essential oils of Angelica sinensis. Constituents in essential oils of Angelica sinensis root were identified by GC-MS with the help of subwindow factor analysis (SFA) method resolving two-dimensional original data into mass spectra and chromatograms. 76 of 97 separated constituents in essential oil of Angelica sinensis root were identified and quantified, and they account for about 91.36% of the total content. The results show that ligustilide, butylene phthalide, 2-methoxy-4-vinylphenol, carvacrol, allo-ocimene,2,6,6-trimethylbicyclo-[3,1,1]hept-2-ene are the main constituents in essential oil of Angelica sinensis root.
基金the Natural Science Foundation of Sichuan Educational Bureau, No. (2001)149-01LA40the Natural Science Foundation of Sichuan Bureau of Science and Technology, No. (2005)14-05JY029-103
文摘BACKGROUND: The enhanced expression of c-Fos protein in nerve cells after hypoxia is the marker for converting extracellular hypoxia information to intracellular changes at hypoxia, and it is suspected that the increase of c-Fos protein can lead to the synthesis and excretion of related neurotrophic factor and nerve growth factor. However, it is still unclear what functional changes of nerve cells are induced by the increase of c-Fos protein at hypoxia, and whether it is good for the survival of damaged neurons. OBJECTIVE: To observe the expression of c-Fos in the cerebral neurons from embryos of rats with hypoxia in uterus, and investigate the pathway for the protective effect of Angelica sinensis injection on the cerebral neurons from rat embryos under hypoxia. DESIGN: A completely randomized controlled study. SETTING: Department of Histology and Embryology, Luzhou Medical College. MATERIALS: Twelve female Wistar rats in oestrum and 1 male adult Wistar rat with body mass of 220 to 250 g were selected. Rabbit-anti-rat neuro-specific enolase (NSE) and rabbit-anti-rat c-Fos were purchased from Wuhan Boster Biological Technology Co., Ltd.; Double-staining kit was bought from Beijing Zhongshan Golden Bridge Biotechnology Co., Ltd. Angelica sinensis injection was produced by the Department of Pharmacy, the Second Affiliated Hospital of Hubei Medical University. METHODS: The experiments were completed in the experimental animal center and the Department of Histology and Embryology of Luzhou Medical College from December 2004 to December 2005. ①Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. The appearance of vaginal embolus at 8:00 in the next morning was recorded as 0 day of pregnancy and the rats were recorded for 15 days, and they were divided randomly into three groups, control group (n =4), hypoxia group (n =4) and Angelica group (n =4). The pregnant rats in the hypoxia group were firstly injected with saline (8 mL/kg), then put into 2 L wide-mouthed bottle containing 100 g sodalime, and then the lid of the bottle was closed tightly to induce hypotonic hypoxia for 1 hour followed by 1-hour re-oxygenation. The pregnant rats were killed under anesthesia, and then fetuses were taken out by rapid cesarean. Part of the brain tissues were exposed and then fixed in formaldehyde (40 g/L). The pregnant rats in the Angelica group were treated the same as those in the hypoxia group except that saline was replaced by 250 g/L Angelica sinensis injection which was injected via caudal vein (8 mL/kg). The rats in the control group were injected with saline (8 mL/kg) slowly via caudal vein, but not put into the wide-mouthed bottle for hypoxia, and then the brain tissues were removed and fixed as those in the hypoxia group after 1 hour. ②Twenty embryos from rats were chosen randomly in each group and then routinely embedded in paraffin. Paraffin sections of 4 μ m thick were prepared through the anterior fontanelle of head of the fetal rats. The sections were immunohistologically stained with c-Fos/NSE. ③The one-way analysis of variance (ANOVA) was used to compare the differences of measurement data among the groups, and the q test was applied in the two-two comparison. MAIN OUTCOME MEASURES: The numbers of c-Fos and c-Fos/NSE positive neurons in cerebrum from rat embryos were observed. RESULTS: ① Numbers of NSE positive neurons in cerebrum of rat embryos in the control group, hypoxia group and Angelica group were (84.3 ±9.0), (90.2±12.5) and (86.7±9.7) cells/high power field (P 〉 0.05). ②The number of c-Fos/NSE positive neurons was more in the hypoxia group than in the control group and Angelica group [(38.4±5.28), (11.35±2.67), (20.65±4.07) cells/high power field, q =29.17, 19.14, P 〈 0.05]. CONCLUSION: Hypoxia can stimulate the expression of c-Fos in cerebral neurons from rat embryos. Angelica sinensis injection could reducing the damage of hypoxia to neurons and play a neuroprotective role by decreasing the expression of c-Fos protein in hypoxic neurons.
文摘Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chloride solution to the ASP solution. Then some identifiable properties of the complex were studied. The content of iron( Ⅲ ) in the complex was determined with iodometry. The thermal property, the microscopic structure, the spectral characteristics, and N, C, H contents of the complex were examined by a variety of techniques including DSC, TEM, IR, NMR, and elemental analysis. The content of iron( Ⅲ ) in the complex ranges from 10% to 40%. The DSC result shows that the melting point of the complex is about 450 ℃. The TEM result shows that the complex has an iron( Ⅲ ) core(β-FeOOH core) linked by hydroxy and oxy bridges, with the polysaccharide chains attached to the surface of the core. The IR and NMR results also show that there is a β-FeOOH core in the complex. The elemental analysis shows that the contents of N, C, H in the complex are, respectively, lower than those of N, C, H in ASP. All our studies indicate that the APC consists of a β-FeOOH core surrounded by ASP.
基金financially supported by the General Fund of National Natural Science Foundation of China(No.30472160).
文摘A new dimeric phthalide named Z, Z'-3.3'a, 7.7'a-diligustilide was isolated from the roots of Angelica sinensis. Its structure was determined using spectroscopic methods and X-ray crystallographic diffraction analysis.
基金This project was supported by the National Natural Science Foundation of China(No.81960828).
文摘Objective:Angelica(A.)sinensis is used as a traditional medical herb for the treatment of neurodegeneration,aging,and inflammation in Asia.A.sinensis optimal formula(AOF)is the best combination in A.sinensis that has been screened to rescue the cognitive ability in P-amyloid peptide(Ap25-35)-treated Alzheimer’s disease(AD)rats.The objective of this study was to investigate the effect of AOF on the learning and memory of AD rats as well as to explore the underlying mechanisms.