Retinal angiogenesis is a critical process for normal retinal function.However,uncontrolled angiogenesis can lead to pathological neovascularization(NV),which is closely related to most irreversible blindness-causing ...Retinal angiogenesis is a critical process for normal retinal function.However,uncontrolled angiogenesis can lead to pathological neovascularization(NV),which is closely related to most irreversible blindness-causing retinal diseases.Understanding the molecular basis behind pathological NV is important for the treatment of related diseases.Twist-related protein 1(TWIST1)is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition(EMT)in many human cancers.Our previous study showed that Twist1 expression is elevated in pathological retinal NV.To date,however,the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated.To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV,we generated an inducible vascular endothelial cell(EC)-specific Twist1 transgenic mouse model(Tg-Twist1iEC+).Whole-mount retinas from Tg-Twist1iEC+mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature,as well as aneurysm-like pathological retinal NV.Furthermore,overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity,thus leading to uncontrolled retinal angiogenesis.TWIST1 promoted pathological NV by activating the Wnt/β-catenin signaling pathway and inducing the expression of NV formation-related genes,thereby acting as a‘valve’in the regulation of pathological angiogenesis.This study identified the critical role of TWIST1 in retinal pathological NV,thus providing a potential therapeutic target for pathological NV.展开更多
Background:To treat vascular proliferative diseases,anti-VEGF therapies have shown systemic adverse effects attributable to the lack of selectivity between pathological and physiological angiogenesis.Thus,identifying ...Background:To treat vascular proliferative diseases,anti-VEGF therapies have shown systemic adverse effects attributable to the lack of selectivity between pathological and physiological angiogenesis.Thus,identifying the molecular mechanisms that are only specific to pathological cell types is crucial to develop better precision medicine.Methods:Here,we used different cell type enrichment approaches combined with single-cell RNA sequencing to define the transcriptomic changes within each retinal cell types in a mouse model of ischemic retinopathy.This retinal model develops pathological neovascularization(NV)in response to local hypoxia following oxygen-induced vessel obliteration(P7 to P12).The NV phenotype is characterized by the progressive appearance of vascular tufts resulting from misguided,abnormal proliferation of endothelial cells that we monitored at 3 consecutive time points-P12,P14 and P17(peak of NV).Results:By following the dynamic response to hypoxia,our experimental design reveals how pathological angiogenesis is specifically associated with significant metabolic adaptations in different subtypes of endothelial cells(i.e.,Tips vs Stalk cells).We also identify a pathological subtype of glial cells over-expressing VEGFA and pro-inflammatory IL-1 receptor subunits.This subtype of activated glial cells was targeted using selective IL1R antagonist treatment which reduced glial activation,inflammation,NV and promotes physiological angiogenesis,therefore improving tissue regeneration.Conclusions:Our results illustrate how analyzing cell type heterogeneity in tissues developing pathological angiogenesis allows establishing better targeting therapies to restore vascular integrity.展开更多
Objective: To investigate the correlations of vascular endothelial growth factor (VEGF)-positive tumor angiogenesis and the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogeni...Objective: To investigate the correlations of vascular endothelial growth factor (VEGF)-positive tumor angiogenesis and the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma. Methods: 30 patients with VEGF-positive bronchogenic adenocarcinomas (diameter ≤ 4 cm) underwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4 mL/sec by using an autoinjector) serial CT. The quantifiable parameters (Perfusion, peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta and mean transit time) of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma were compared with microvessel densities (MVDs) and VEGF expression by immunohistochemistry. Results: Peak height of VEGF-positive bronchogenic adenocarcinoma was 36.06 HU ± 13.57 HU, bronchogenic adenocarcinoma-to-aorta ratio 14.25% ± 4.92, and perfusion value 29.66 ± 5.60 mL/min/100 g , mean transit time 14.86 s ± 5.84 s, and MVD 70.15 ± 20.03. Each of peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta and perfusion correlated positively with MVD (r = 0.781, P < 0.0001; r = 0.688, P < 0.0001; r = 0.716, P < 0.0001; respectively). No significant correlation was found between mean transit time and MVD (r = 0.260, P = 0.200 > 0.05). Conclusion: Perfusion, peak height and ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta reflect MVD in VEGF-positive bronchogenic adenocarcinoma. Perfusion, peak height and ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta derived with dynamic CT might be index for VEGF-related tumor angiogenesis in bronchogenic adenocarcinoma.展开更多
Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose a...Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
Retinal neovascularization is a leading cause of blindness.While current anti-VEGF drugs effectively inhibit pathological angiogenesis,some patients develop resistance or reduced responsiveness to treatments over time...Retinal neovascularization is a leading cause of blindness.While current anti-VEGF drugs effectively inhibit pathological angiogenesis,some patients develop resistance or reduced responsiveness to treatments over time,leading to diminished effectiveness.In this study,we identified high activation of the cGAS-STING signaling pathway,which exacerbated pathological neovascularization and vessel leakage.We developed an injectable thermo-responsive supramolecular hydrogel loaded with an anti-STING drug.The hydrogel,made of Pluronic F127 demonstrated excellent transparency and biocompatibility.Importantly,the thermo-sensitive property allowed for precise spatial release of the drug,extending the effective treatment duration of C-176,which suppressed STING activation in the retina,reduced inflammation and protected retinal tissue.Hydro^(C-176) effectively inhibited microglial cell infiltration and the release of inflammatory angiogenic factors,highlighting its enhanced efficacy.While demonstrating slightly lower effectiveness compared to traditional anti-VEGF therapy,Hydro^(C-176) exhibited more robust capabilities in regulating ocular microenvironmental inflammation.This approach may assist in enhancing the sensitivity and effectiveness of anti-VEGF therapy for reducing ocular inflammation,potentially improving patients’response to traditional treatment.These results have suggested innovative and comprehensive strategies for the management of retinal neovascularization.展开更多
BACKGROUND Gastric cancer(GC)is a significant health problem worldwide,and early detection and accurate diagnosis are crucial for improving patient outcomes.Crawling-type gastric adenocarcinoma is a rare subtype of GC...BACKGROUND Gastric cancer(GC)is a significant health problem worldwide,and early detection and accurate diagnosis are crucial for improving patient outcomes.Crawling-type gastric adenocarcinoma is a rare subtype of GC that has unique histopathological and clinical characteristics,and its diagnosis and management can be challenging.This pathological type of GC is also rare.CASE SUMMARY Here,we report the case of a patient who underwent ordinary endoscopy,na-rrow-band imaging,and endoscopic ultrasonography intending to determine the extent of tumor invasion and upper abdominal enhanced computed tomography and whether there was tumor metastasis.Then,endoscopic submucosal dissection was performed.After pathological and immunohistochemical examination,the pathological diagnosis was crawling-type gastric adenocarcinoma.This is a very rare and special pathological type of tumor.This case highlights the importance of using advanced endoscopic techniques and pathological examination in diagnosing and managing gastric crawling-type adenocarcinoma.Moreover,the findings underscore the need for continued research and clinical experience in this rare subtype of GC to improve patient outcomes.CONCLUSION The“crawling-type”GC is a rare and specific tumor pathology.It is difficult to identify and diagnose gliomas via endoscopy.The tumor is ill-defined,with a flat appearance and indistinct borders due to the lack of contrast against the background mucosa.Pathology revealed that the tumor cells were hand-like,so the patient has diagnosed with“crawling-type”gastric adenocarcinoma.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.Howev...BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.展开更多
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces...BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.展开更多
A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged ...A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model,treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs)were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (v FAOs). Consistently, treatment with arecoline reduced the expression of CD31in v FAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.展开更多
Tau protein is encoded by the microtubuleassociated protein tau(MAPT)gene and stabilizes microtubules in the neurons.Tau has unique biophysical properties that make it both highly water-soluble and positively charged....Tau protein is encoded by the microtubuleassociated protein tau(MAPT)gene and stabilizes microtubules in the neurons.Tau has unique biophysical properties that make it both highly water-soluble and positively charged.Although tau is an intrinsically disordered protein lacking defined secondary structures,it can acquire highly organized-sheet structures and stack into a filamentous inclusion such as a paired helical filament(PHF).展开更多
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the pr...Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.展开更多
The build-up of misfoldedα-synuclein(α-syn)in the central nervous system is the pathological hallmark of a number of neurodegenerative diseases that are known asα-synucleinopathies.These include Parkinson’s diseas...The build-up of misfoldedα-synuclein(α-syn)in the central nervous system is the pathological hallmark of a number of neurodegenerative diseases that are known asα-synucleinopathies.These include Parkinson’s disease(PD),Parkinson’s disease with dementia(PDD),dementia with Lewy body(LB),multiple system atrophy(MSA),and a subset of Alzheimer’s disease.Growing evidence underscores that the intercellular transmission and amplification of pathologicalα-syn are critical processes underlying the progression ofα-synucleinopathies(Peng et al.,2020),and as such,the study of these processes could lead to the identification of promising therapeutics to mitigate disease progression.Most previous studies have focused solely on pathological seeds in relation to disease progression.展开更多
The low detection rate of Mycobacterium tuberculosis in clinical practice leads to a high rate of missed diagnosis for pulmonary tuberculosis(PTB).As a noninvasive,high-resolution,real-time imaging technology,polariza...The low detection rate of Mycobacterium tuberculosis in clinical practice leads to a high rate of missed diagnosis for pulmonary tuberculosis(PTB).As a noninvasive,high-resolution,real-time imaging technology,polarization-sensitive optical coherence tomography(PS-OCT)may be feasible for the rapid identification of pathological feature.This study aimed to explore the feasibility of using PS-OCT to identify pathological features of PTB.In the experiments,PTB samples containing some surrounding lung tissues were imaged using PS-OCT.It is demonstrated that PS-OCT images showed good consistency with the corresponding pathological images and were able to identify PTB-related characteristic pathological regions.We think PS-OCT can serve as an effective supplement for the diagnosis of PTB,enabling rapid and accurate diagnosis,and aiding in the understanding of the pathological characteristics and pathophysiological processes of PTB.展开更多
AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascul...AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascular endothelial cells(HRMECs)were treated with high concentration of glucose alone or in combination with ghrelin.The cell migration,tube formation and the expression of the autophagy-related proteins LC3-II/I,Beclin-1,p62,phosphorylated AKT(p-AKT)/AKT and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR were detected.Then,to clarify the correlation between ghrelin effect and autophagy,AKT inhibitor VIII was adopted to treat HRMECs,and cell migration,tube formation as well as the protein expressions of LC3-II/I,Beclin-1 and p62 were observed.RESULTS:Under HG stress,ghrelin inhibited migration and tube formation of HRMECs.Ghrelin inhibited the increases in the protein levels of LC3-II/I,Beclin-1 and the decreases in the protein levels of p62,p-AKT/AKT and p-mTOR/mTOR induced by HG stress.Moreover,under the action of AKT/mTOR pathway inhibitors,the effects of ghrelin on migration and tube formation were both reduced.In addition,the expression of LC3-II/I and Beclin-1 were significantly up-regulated and the expression of p62 was down-regulated.CONCLUSION:Retinal angiogenesis under in vitro HG stress can be inhibited by ghrelin through activating AKT/mTOR pathway to inhibit autophagy.展开更多
Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the preven...Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the prevention of heart failure after MI,and miR-106a is considered to be an important regulatory factor in MI.But the specific mechanism remains unknown.In this study,using cultured venous endothelial cells and a rat model of MI,we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis.Methods:We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells.Then we identified ATG7,which was the down-stream target gene of miR-106a.The expression of miR-106a and ATG7 was investi-gated in the rat model of MI.Results:We found that miR-106a inhibits the proliferation,cell cycle,autophagy and angiogenesis,but promoted the apoptosis of vein endothelial cells.Moreover,ATG7 was identified as the target of miR-106a,and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a.The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas.Conclusion:Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7.This mechanism may be a potential therapeutic treatment for MI.展开更多
Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether...Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.展开更多
Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was ...Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.展开更多
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio...Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.展开更多
基金supported by the National Natural Science Foundation of China(82071009,81700841)the Grant from Chinese Academy of Medical Sciences(2019-I2M-5-032)。
文摘Retinal angiogenesis is a critical process for normal retinal function.However,uncontrolled angiogenesis can lead to pathological neovascularization(NV),which is closely related to most irreversible blindness-causing retinal diseases.Understanding the molecular basis behind pathological NV is important for the treatment of related diseases.Twist-related protein 1(TWIST1)is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition(EMT)in many human cancers.Our previous study showed that Twist1 expression is elevated in pathological retinal NV.To date,however,the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated.To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV,we generated an inducible vascular endothelial cell(EC)-specific Twist1 transgenic mouse model(Tg-Twist1iEC+).Whole-mount retinas from Tg-Twist1iEC+mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature,as well as aneurysm-like pathological retinal NV.Furthermore,overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity,thus leading to uncontrolled retinal angiogenesis.TWIST1 promoted pathological NV by activating the Wnt/β-catenin signaling pathway and inducing the expression of NV formation-related genes,thereby acting as a‘valve’in the regulation of pathological angiogenesis.This study identified the critical role of TWIST1 in retinal pathological NV,thus providing a potential therapeutic target for pathological NV.
文摘Background:To treat vascular proliferative diseases,anti-VEGF therapies have shown systemic adverse effects attributable to the lack of selectivity between pathological and physiological angiogenesis.Thus,identifying the molecular mechanisms that are only specific to pathological cell types is crucial to develop better precision medicine.Methods:Here,we used different cell type enrichment approaches combined with single-cell RNA sequencing to define the transcriptomic changes within each retinal cell types in a mouse model of ischemic retinopathy.This retinal model develops pathological neovascularization(NV)in response to local hypoxia following oxygen-induced vessel obliteration(P7 to P12).The NV phenotype is characterized by the progressive appearance of vascular tufts resulting from misguided,abnormal proliferation of endothelial cells that we monitored at 3 consecutive time points-P12,P14 and P17(peak of NV).Results:By following the dynamic response to hypoxia,our experimental design reveals how pathological angiogenesis is specifically associated with significant metabolic adaptations in different subtypes of endothelial cells(i.e.,Tips vs Stalk cells).We also identify a pathological subtype of glial cells over-expressing VEGFA and pro-inflammatory IL-1 receptor subunits.This subtype of activated glial cells was targeted using selective IL1R antagonist treatment which reduced glial activation,inflammation,NV and promotes physiological angiogenesis,therefore improving tissue regeneration.Conclusions:Our results illustrate how analyzing cell type heterogeneity in tissues developing pathological angiogenesis allows establishing better targeting therapies to restore vascular integrity.
文摘Objective: To investigate the correlations of vascular endothelial growth factor (VEGF)-positive tumor angiogenesis and the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma. Methods: 30 patients with VEGF-positive bronchogenic adenocarcinomas (diameter ≤ 4 cm) underwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4 mL/sec by using an autoinjector) serial CT. The quantifiable parameters (Perfusion, peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta and mean transit time) of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma were compared with microvessel densities (MVDs) and VEGF expression by immunohistochemistry. Results: Peak height of VEGF-positive bronchogenic adenocarcinoma was 36.06 HU ± 13.57 HU, bronchogenic adenocarcinoma-to-aorta ratio 14.25% ± 4.92, and perfusion value 29.66 ± 5.60 mL/min/100 g , mean transit time 14.86 s ± 5.84 s, and MVD 70.15 ± 20.03. Each of peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta and perfusion correlated positively with MVD (r = 0.781, P < 0.0001; r = 0.688, P < 0.0001; r = 0.716, P < 0.0001; respectively). No significant correlation was found between mean transit time and MVD (r = 0.260, P = 0.200 > 0.05). Conclusion: Perfusion, peak height and ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta reflect MVD in VEGF-positive bronchogenic adenocarcinoma. Perfusion, peak height and ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta derived with dynamic CT might be index for VEGF-related tumor angiogenesis in bronchogenic adenocarcinoma.
基金supported by funding from the National Institutes of Health(R01 NS117510)(to RLM)。
文摘Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金This study was supported by grants from the National Natural Science Foundation of China(No.82271054,ZL,No.U20A20363,JH).
文摘Retinal neovascularization is a leading cause of blindness.While current anti-VEGF drugs effectively inhibit pathological angiogenesis,some patients develop resistance or reduced responsiveness to treatments over time,leading to diminished effectiveness.In this study,we identified high activation of the cGAS-STING signaling pathway,which exacerbated pathological neovascularization and vessel leakage.We developed an injectable thermo-responsive supramolecular hydrogel loaded with an anti-STING drug.The hydrogel,made of Pluronic F127 demonstrated excellent transparency and biocompatibility.Importantly,the thermo-sensitive property allowed for precise spatial release of the drug,extending the effective treatment duration of C-176,which suppressed STING activation in the retina,reduced inflammation and protected retinal tissue.Hydro^(C-176) effectively inhibited microglial cell infiltration and the release of inflammatory angiogenic factors,highlighting its enhanced efficacy.While demonstrating slightly lower effectiveness compared to traditional anti-VEGF therapy,Hydro^(C-176) exhibited more robust capabilities in regulating ocular microenvironmental inflammation.This approach may assist in enhancing the sensitivity and effectiveness of anti-VEGF therapy for reducing ocular inflammation,potentially improving patients’response to traditional treatment.These results have suggested innovative and comprehensive strategies for the management of retinal neovascularization.
基金Supported by the Songjiang District Tackling Key Science and Technology Research Projects,No.20sjkjgg32Excellent Young Talents Training Program of Songjiang Hospital Affiliated with Shanghai Jiao Tong University School of Medicine,No.QNRC-004Science and Technology project of Songjiang District,No.22SJKJGG81.
文摘BACKGROUND Gastric cancer(GC)is a significant health problem worldwide,and early detection and accurate diagnosis are crucial for improving patient outcomes.Crawling-type gastric adenocarcinoma is a rare subtype of GC that has unique histopathological and clinical characteristics,and its diagnosis and management can be challenging.This pathological type of GC is also rare.CASE SUMMARY Here,we report the case of a patient who underwent ordinary endoscopy,na-rrow-band imaging,and endoscopic ultrasonography intending to determine the extent of tumor invasion and upper abdominal enhanced computed tomography and whether there was tumor metastasis.Then,endoscopic submucosal dissection was performed.After pathological and immunohistochemical examination,the pathological diagnosis was crawling-type gastric adenocarcinoma.This is a very rare and special pathological type of tumor.This case highlights the importance of using advanced endoscopic techniques and pathological examination in diagnosing and managing gastric crawling-type adenocarcinoma.Moreover,the findings underscore the need for continued research and clinical experience in this rare subtype of GC to improve patient outcomes.CONCLUSION The“crawling-type”GC is a rare and specific tumor pathology.It is difficult to identify and diagnose gliomas via endoscopy.The tumor is ill-defined,with a flat appearance and indistinct borders due to the lack of contrast against the background mucosa.Pathology revealed that the tumor cells were hand-like,so the patient has diagnosed with“crawling-type”gastric adenocarcinoma.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金Supported by Natural Science Foundation of Guangdong Province,No.2020A1515011539.
文摘BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.
文摘BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
基金supported by grants from National Key R&D Programme of China (No. 2022YFC2504200)the Fundamental Research Funds for the Central Universities (No. 2042023kf0154, No. 2042023kfyq02)+1 种基金the National Nature Science Foundation of China (No. 82273306, No.81901016, No. 82303326)Wuhan Knowledge Innovation Program (No.2022020801020469)。
文摘A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model,treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs)were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (v FAOs). Consistently, treatment with arecoline reduced the expression of CD31in v FAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.
基金supported by grants from the National Research Foundation of Korea (2021 R1A2C2008023,2020R1A5A 1019023RS-2023-00261784 to MJL2021R1/1A1A 01051245to JHL)。
文摘Tau protein is encoded by the microtubuleassociated protein tau(MAPT)gene and stabilizes microtubules in the neurons.Tau has unique biophysical properties that make it both highly water-soluble and positively charged.Although tau is an intrinsically disordered protein lacking defined secondary structures,it can acquire highly organized-sheet structures and stack into a filamentous inclusion such as a paired helical filament(PHF).
基金supported by the GRF RGC&CRF,Hong Kong(Grant Nos.:475012 and C5045-20 EF)HMRF,Hong Kong(Grant No.:03141386)+3 种基金ITF,Hong Kong(Grant No.:ITS/209/12)UGC Direct Grant 2011,2012,2021.032HKOG Trust Fund 2011,2014,2019the National Natural Science Foundation of China(Grant Nos.:81974225 and 82201823)。
文摘Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
文摘The build-up of misfoldedα-synuclein(α-syn)in the central nervous system is the pathological hallmark of a number of neurodegenerative diseases that are known asα-synucleinopathies.These include Parkinson’s disease(PD),Parkinson’s disease with dementia(PDD),dementia with Lewy body(LB),multiple system atrophy(MSA),and a subset of Alzheimer’s disease.Growing evidence underscores that the intercellular transmission and amplification of pathologicalα-syn are critical processes underlying the progression ofα-synucleinopathies(Peng et al.,2020),and as such,the study of these processes could lead to the identification of promising therapeutics to mitigate disease progression.Most previous studies have focused solely on pathological seeds in relation to disease progression.
基金funded by the Tianjin Foundation of Natural Science(No.21JCYBJC00260)Tianjin Key Medical Discipline(Thoracic Surgery)Construction Project No.TJYXZDXK-018A and the National Natural Science Foundation of China(62375144 and 61875092).
文摘The low detection rate of Mycobacterium tuberculosis in clinical practice leads to a high rate of missed diagnosis for pulmonary tuberculosis(PTB).As a noninvasive,high-resolution,real-time imaging technology,polarization-sensitive optical coherence tomography(PS-OCT)may be feasible for the rapid identification of pathological feature.This study aimed to explore the feasibility of using PS-OCT to identify pathological features of PTB.In the experiments,PTB samples containing some surrounding lung tissues were imaged using PS-OCT.It is demonstrated that PS-OCT images showed good consistency with the corresponding pathological images and were able to identify PTB-related characteristic pathological regions.We think PS-OCT can serve as an effective supplement for the diagnosis of PTB,enabling rapid and accurate diagnosis,and aiding in the understanding of the pathological characteristics and pathophysiological processes of PTB.
基金the Science and Technology Program of Shaanxi Province(No.2024SF-YBXM-324)Matching Funds of the Science and Technology Program of Shaanxi Province(No.XYFYPT-2023-01)Health Scientific and Technology Projects of Hangzhou(No.B20231615).
文摘AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascular endothelial cells(HRMECs)were treated with high concentration of glucose alone or in combination with ghrelin.The cell migration,tube formation and the expression of the autophagy-related proteins LC3-II/I,Beclin-1,p62,phosphorylated AKT(p-AKT)/AKT and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR were detected.Then,to clarify the correlation between ghrelin effect and autophagy,AKT inhibitor VIII was adopted to treat HRMECs,and cell migration,tube formation as well as the protein expressions of LC3-II/I,Beclin-1 and p62 were observed.RESULTS:Under HG stress,ghrelin inhibited migration and tube formation of HRMECs.Ghrelin inhibited the increases in the protein levels of LC3-II/I,Beclin-1 and the decreases in the protein levels of p62,p-AKT/AKT and p-mTOR/mTOR induced by HG stress.Moreover,under the action of AKT/mTOR pathway inhibitors,the effects of ghrelin on migration and tube formation were both reduced.In addition,the expression of LC3-II/I and Beclin-1 were significantly up-regulated and the expression of p62 was down-regulated.CONCLUSION:Retinal angiogenesis under in vitro HG stress can be inhibited by ghrelin through activating AKT/mTOR pathway to inhibit autophagy.
基金National Natural Science Foundation of China,Grant/Award Number:32070542Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515010873 and 2022A1515011455+1 种基金Breed Industry Innovation Park of Guangdong Xiaoerhua Pig,Grant/Award Number:2022-4408X1-43010402-0019Hainan Provincial Natural Science Foundation,Grant/Award Number:818MS132。
文摘Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the prevention of heart failure after MI,and miR-106a is considered to be an important regulatory factor in MI.But the specific mechanism remains unknown.In this study,using cultured venous endothelial cells and a rat model of MI,we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis.Methods:We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells.Then we identified ATG7,which was the down-stream target gene of miR-106a.The expression of miR-106a and ATG7 was investi-gated in the rat model of MI.Results:We found that miR-106a inhibits the proliferation,cell cycle,autophagy and angiogenesis,but promoted the apoptosis of vein endothelial cells.Moreover,ATG7 was identified as the target of miR-106a,and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a.The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas.Conclusion:Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7.This mechanism may be a potential therapeutic treatment for MI.
基金supported by Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ11-061,ZZ14-YQ-007)the National Natural Science Foundation of China(82004193)+1 种基金CACMS Innovation Fund(CI 2021A00914)Irma and Paul Milstein Program for Senior Health of Milstein Medical Asian American Partnership Foundation。
文摘Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.
文摘Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.
基金supported by the National Natural Science Foundation of China,Nos.81801236(to ZX),81974189(to HT)a grant from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.ynlc201719(to QZ).
文摘Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.