This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological...This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological stations in the country, namely: Salima, Makoka, Karonga, Bolero, Chileka and Mzimba over the period 1991-1995, a set of Angstrom constants were obtained and averaged in order to develop the linear regression model. This model has potential for generating ground observation data of solar radiation at any given location in the country using sunshine hours as the only required input. The Gunn-Bellan Spherical Pyranometer and the Campbell Stokes Sunshine Recorder were respectively used in the measurement of incident radiation (Ib) in J·cm–2/day (converted to MJ·m–2·day–1) and sunshine hours. An Angstrom model of monthly average Clearness Index with normalized sunshine duration was then developed for each of the six meteorological stations. The resulting linear regression model was applied in estimating monthly average daily solar radiation. Regression analysis between computed and measured radiation data was applied to assess the reliability of the generated Angstrom constants. The results generally show a high degree of agreement between the two variables, with correlation coefficients ranging from 0.63 to 0.90. Angstrom constants obtained at the six meteorological stations were thereafter averaged in order to develop a linear regression model for estimating solar radiation in Malawi. Solar radiation values obtained using this model were noted to be in good agreement with those developed for each of the six meteorological stations.展开更多
Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a...Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.展开更多
文摘This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological stations in the country, namely: Salima, Makoka, Karonga, Bolero, Chileka and Mzimba over the period 1991-1995, a set of Angstrom constants were obtained and averaged in order to develop the linear regression model. This model has potential for generating ground observation data of solar radiation at any given location in the country using sunshine hours as the only required input. The Gunn-Bellan Spherical Pyranometer and the Campbell Stokes Sunshine Recorder were respectively used in the measurement of incident radiation (Ib) in J·cm–2/day (converted to MJ·m–2·day–1) and sunshine hours. An Angstrom model of monthly average Clearness Index with normalized sunshine duration was then developed for each of the six meteorological stations. The resulting linear regression model was applied in estimating monthly average daily solar radiation. Regression analysis between computed and measured radiation data was applied to assess the reliability of the generated Angstrom constants. The results generally show a high degree of agreement between the two variables, with correlation coefficients ranging from 0.63 to 0.90. Angstrom constants obtained at the six meteorological stations were thereafter averaged in order to develop a linear regression model for estimating solar radiation in Malawi. Solar radiation values obtained using this model were noted to be in good agreement with those developed for each of the six meteorological stations.
文摘Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.