It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat...It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.展开更多
To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software ...To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.展开更多
Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of ...Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.展开更多
Atmospheric turbulence(AT) induced crosstalk can significantly impair the performance of a free-space optical(FSO)communication link using orbital angular momentum(OAM) multiplexing.In this paper,we propose a mu...Atmospheric turbulence(AT) induced crosstalk can significantly impair the performance of a free-space optical(FSO)communication link using orbital angular momentum(OAM) multiplexing.In this paper,we propose a multiple-user detection(MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link.First,we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT.In the equivalent model,each input bit stream represents one user's information.The deformed OAM spatial modes caused by AT,instead of the pure OAM spatial modes,are used as information carriers,and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users.Then,we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link.In the proposed scheme,the crosstalk caused by AT is used as a useful component to deduce users' information.The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme.When the turbulence strength C_n^2 is 1 × 10^(-15) m^(-2/3),the transmission distance is 1000 m and the channel signal-to-noise ratio(SNR)is 26 dB,the bit-error-rate(BER) performance of four spatial multiplexed OAM modes l_m = + 1,+2,+3,+4 are all close to 10-5,and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme.In addition,the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval.The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.展开更多
A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pr...A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pressure with heat stress of steady state, residual stress, bending stress produced by both itself weight and wind loads, it showed that the stresses produced by pressure on the angle distortion are the main factor of equivalent stress of the combined stress. After comparing four kinds of stress controlling conditions, the relation to stress with depth of angular distortion, grade of curvature of angular distortion and half of region of angular distortion has been inferred. Graph of deformation allowable value of coke tower for different condition by angular distortion and half of region of angular distortion has been plotted. The five steps for its engineering use have been explained. The lighter the grade of curvature is, the larger of bulge allowance, may be, and the bigger of depth of angular distortion may pose too. For the coke tower with a popular structure of Dg 5 400 mmx28 mm, the result by graph is nearly more than the result of two formulas formed by other research, the error is less than 7.0%. But, the graph can be easily applied to different size of angular distortion.展开更多
Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specime...Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specimens in the conventional ECAE,driving forces are applied to dies in SC-EACE. The deformation of interstitial-free( IF) steel w as performed at room temperature,and individual specimens w ere repeatedly processed at various passes. An overall grain size of 0. 55 μm w as achieved after 10 passes. During SC-ECAE,the main textures of IF steel included { 111} ,{ 110} ,{ 112} ,{ 110} ,and { 110} At an early stage,increasing dislocations induce new textures and increase intensity. When the deformation continues,low-angle boundaries are formed betw een dislocation cell bands,w hich cause some dislocation cell bands to change their orientation,and therefore,the intensity of the textures begins to decrease. After more passes,the intensity of textures continues to decrease w ith high-angle boundaries,and the sub-grains in dislocation cell bands continuously increase. The present study reports the evolution of textures during deformation; these w ere examined and characterized using high-resolution electron backscattered diffraction( EBSD) in a field emission scanning electron microscope. The mechanisms of texture evolution are discussed.展开更多
Using double eUipsoid heat source as inner heat source, a model of T-joint weldment of CLAW steel was established in order to analysis the temperature field, residual stress distribution and the angular deformation. A...Using double eUipsoid heat source as inner heat source, a model of T-joint weldment of CLAW steel was established in order to analysis the temperature field, residual stress distribution and the angular deformation. And the temperature- dependent properties of material were considered in this model. The results show that the temperature distribution changes with the movement of heat source, every node goes through two thermal cycles. And every curve has two peak values ; the first peak value is higher than the second one. The largest deformation appears at the weld toe.展开更多
General solutions of the Smorodinsky-Winternitz system and the Fokas-Lagerstorm system, which are superintegrable in two-dimensional Euclidean space, are obtained using the algebraic method (structure function). The...General solutions of the Smorodinsky-Winternitz system and the Fokas-Lagerstorm system, which are superintegrable in two-dimensional Euclidean space, are obtained using the algebraic method (structure function). Their dynamical symmetries, which are governed by deformed angular momentum algebras, are revealed.展开更多
The purpose of this study was to report the use and assess the effects of extracorporeal shockwave therapy (ESWT) for the treatment of carpal joint valgus deformities (CJVDs) in young foals. Only foals with CJVDs grea...The purpose of this study was to report the use and assess the effects of extracorporeal shockwave therapy (ESWT) for the treatment of carpal joint valgus deformities (CJVDs) in young foals. Only foals with CJVDs greater than 5° were included in the study. Foals were assigned to 3 treatment groups based on their degree of CJVD measured during the initial evaluation: valgus deformity (VD) of 5° to 8.9° (Group 1), VD of 9° to 11.9° (Group 2) and VD greater than or equal to 12° (Group 3). ESWT was applied on the convex side of the angular deformity immediately following the initial radiographic evaluation. Foals were subsequently evaluated clinically and radiologically followed by treatment every 10 days until resolution of the VD, with resolution defined as a deviation less than 5 degrees. Each treatment group received specific exercise, hoof trimming and hoof/shoe extension recommendations. Sixty-four (64) foals were included in the study;ages ranged from 8 to 60 days old at inclusion in the study with a mean age of 26.7 days. Of the 28 foals included in Group 1, 10 had bilateral CJVD. There were 21 in Group 2, and 15 in Group 3. Treatment success was defined as a VD angle less than 5°, and was reached in all foals in Groups 1 and 2. Five (5) foals in Group 3 completed the study with a VD angle of 5° to 6.7° at the last radiographic assessment. No major complications were observed during the study. In conclusion, ESWT in conjunction with controlled exercise, hoof trimming and hoof/shoe extensions corrected severe CJVDs in young foals. The use of ESWT eliminates possible negative side effects of general anesthesia and surgical techniques to treat VDs. Future studies should include a control population, more severe cases, other types of angular limb deformities, and older foals.展开更多
A method for beam diffraction sidelobe suppression based on the combination of volume Bragg gratings(VBGs)with different thicknesses or periods for angular filtering is proposed and performed. Simulated and experime...A method for beam diffraction sidelobe suppression based on the combination of volume Bragg gratings(VBGs)with different thicknesses or periods for angular filtering is proposed and performed. Simulated and experimental results show that the beam diffraction sidelobe is reduced from 12% to less than 1% with the non-sidelobe angular filter. The non-sidelobe angular filtering based on VBGs with thicknesses of 2.5 and 2.9 mm is simulated and demonstrated. The near-field distribution of filtered beams through the non-sidelobe angular filter is obviously smoother than that of the single VBG. The near-field modulation and contrast ratio(C) of filtered beams are found to be improved 1.17 and 1.66 times that of the single VBG. The far-field C of the filtered beam is improved to about 100∶1 and the power spectral density analysis shows that the cutoff frequency of the angular filter is greatly optimized with the VBG combination.展开更多
Results of a large set of tensile and compressive creep tests on pure Al were reanalyzed for the influence of low-and high-angle grain boundaries on the deformation resistance at the temperature T = 473 K = 0.51 Tmwhe...Results of a large set of tensile and compressive creep tests on pure Al were reanalyzed for the influence of low-and high-angle grain boundaries on the deformation resistance at the temperature T = 473 K = 0.51 Tmwhere Tm is the melting point.Thermomechanical treatment by equal channel angular pressing followed by heating to T led to strong increase of areal fraction of high-angle boundaries in a structure of subgrains of ≈10^-6m in size,accompanied by significant reduction of subgrain strengthening and of the stress sensitivity of the deformation rate.(Sub)grain strengthening by low-angle boundaries is most effective;the strengthening effect virtually disappears during creep as the boundary spacings coarsen toward their stress-dependent,quasi-stationary size wqs.The same type of coarsening is found for(sub)grain structures with large fraction of high-angle boundaries;in the quasi-stationary state they lead to softening at low and strengthening at high stresses,and a significant increase in tensile fracture strain to values up to 0.8.The results are analogous to former results for Cu and are explained in the same way by the influence of boundaries on storage and recovery of crystal defects and the homogenization of glide.展开更多
The hot ductility of 6061 aluminum alloy,which was subjected to two different severe plastic deformations(SPD),was studied at different temperatures and strain rates.The tensile tests were carried out at the tempera...The hot ductility of 6061 aluminum alloy,which was subjected to two different severe plastic deformations(SPD),was studied at different temperatures and strain rates.The tensile tests were carried out at the temperature range of 300-500 ℃ and at the strain rates of 0.0005-0.01 s^(-1).The microstructure evolution was characterized using optical microscopy,transmission electron microscopy and X-ray diffraction technique.The influences of the microstructure after SPD,thermomechanical parameters(temperature and strain rate) and specimen size on the hot formability of this alloy were then analyzed.The results show that a decrease in grains/subgrains exhibited significant effect on the hot ductility of SPDed samples.The constitutive equations were then developed to model the hot formability of the studied alloy.The developed model can be represented by Zener-Hollomon parameter in a hyperbolic sinusoidal equation form.Both the changes of elongation to failure and Zener-Hollomon parameter indicate that the hot ductility of the alloy is more sensitive to the temperature rather than to the strain rate.The uniform elongation is independent of the specimen size,but the postnecking elongation increases dramatically as the ratio of l/A^(1/2) decreases.展开更多
基金National Natural Science Foundation of China (No. 50775053, 50675046)
文摘It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.
基金This work was supported by the National Natural Science Foundation of China ( Grant No. 50305035 ).
文摘To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.
文摘Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,China(Grant No.NYKL2015011)+1 种基金the Postgraduate Innovation Research Plan of Jiangsu Province,China(Grant No.CXZZ13_0489)the University Natural Science Foundation of Jiangsu Province,China(Grant No.16KJB510037)
文摘Atmospheric turbulence(AT) induced crosstalk can significantly impair the performance of a free-space optical(FSO)communication link using orbital angular momentum(OAM) multiplexing.In this paper,we propose a multiple-user detection(MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link.First,we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT.In the equivalent model,each input bit stream represents one user's information.The deformed OAM spatial modes caused by AT,instead of the pure OAM spatial modes,are used as information carriers,and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users.Then,we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link.In the proposed scheme,the crosstalk caused by AT is used as a useful component to deduce users' information.The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme.When the turbulence strength C_n^2 is 1 × 10^(-15) m^(-2/3),the transmission distance is 1000 m and the channel signal-to-noise ratio(SNR)is 26 dB,the bit-error-rate(BER) performance of four spatial multiplexed OAM modes l_m = + 1,+2,+3,+4 are all close to 10-5,and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme.In addition,the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval.The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.
文摘A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pressure with heat stress of steady state, residual stress, bending stress produced by both itself weight and wind loads, it showed that the stresses produced by pressure on the angle distortion are the main factor of equivalent stress of the combined stress. After comparing four kinds of stress controlling conditions, the relation to stress with depth of angular distortion, grade of curvature of angular distortion and half of region of angular distortion has been inferred. Graph of deformation allowable value of coke tower for different condition by angular distortion and half of region of angular distortion has been plotted. The five steps for its engineering use have been explained. The lighter the grade of curvature is, the larger of bulge allowance, may be, and the bigger of depth of angular distortion may pose too. For the coke tower with a popular structure of Dg 5 400 mmx28 mm, the result by graph is nearly more than the result of two formulas formed by other research, the error is less than 7.0%. But, the graph can be easily applied to different size of angular distortion.
文摘Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specimens in the conventional ECAE,driving forces are applied to dies in SC-EACE. The deformation of interstitial-free( IF) steel w as performed at room temperature,and individual specimens w ere repeatedly processed at various passes. An overall grain size of 0. 55 μm w as achieved after 10 passes. During SC-ECAE,the main textures of IF steel included { 111} ,{ 110} ,{ 112} ,{ 110} ,and { 110} At an early stage,increasing dislocations induce new textures and increase intensity. When the deformation continues,low-angle boundaries are formed betw een dislocation cell bands,w hich cause some dislocation cell bands to change their orientation,and therefore,the intensity of the textures begins to decrease. After more passes,the intensity of textures continues to decrease w ith high-angle boundaries,and the sub-grains in dislocation cell bands continuously increase. The present study reports the evolution of textures during deformation; these w ere examined and characterized using high-resolution electron backscattered diffraction( EBSD) in a field emission scanning electron microscope. The mechanisms of texture evolution are discussed.
文摘Using double eUipsoid heat source as inner heat source, a model of T-joint weldment of CLAW steel was established in order to analysis the temperature field, residual stress distribution and the angular deformation. And the temperature- dependent properties of material were considered in this model. The results show that the temperature distribution changes with the movement of heat source, every node goes through two thermal cycles. And every curve has two peak values ; the first peak value is higher than the second one. The largest deformation appears at the weld toe.
基金Project supported by the State Key Basic Research Development Programs(Grant Nos.2007CB815005 and 2009CB929402)
文摘General solutions of the Smorodinsky-Winternitz system and the Fokas-Lagerstorm system, which are superintegrable in two-dimensional Euclidean space, are obtained using the algebraic method (structure function). Their dynamical symmetries, which are governed by deformed angular momentum algebras, are revealed.
文摘The purpose of this study was to report the use and assess the effects of extracorporeal shockwave therapy (ESWT) for the treatment of carpal joint valgus deformities (CJVDs) in young foals. Only foals with CJVDs greater than 5° were included in the study. Foals were assigned to 3 treatment groups based on their degree of CJVD measured during the initial evaluation: valgus deformity (VD) of 5° to 8.9° (Group 1), VD of 9° to 11.9° (Group 2) and VD greater than or equal to 12° (Group 3). ESWT was applied on the convex side of the angular deformity immediately following the initial radiographic evaluation. Foals were subsequently evaluated clinically and radiologically followed by treatment every 10 days until resolution of the VD, with resolution defined as a deviation less than 5 degrees. Each treatment group received specific exercise, hoof trimming and hoof/shoe extension recommendations. Sixty-four (64) foals were included in the study;ages ranged from 8 to 60 days old at inclusion in the study with a mean age of 26.7 days. Of the 28 foals included in Group 1, 10 had bilateral CJVD. There were 21 in Group 2, and 15 in Group 3. Treatment success was defined as a VD angle less than 5°, and was reached in all foals in Groups 1 and 2. Five (5) foals in Group 3 completed the study with a VD angle of 5° to 6.7° at the last radiographic assessment. No major complications were observed during the study. In conclusion, ESWT in conjunction with controlled exercise, hoof trimming and hoof/shoe extensions corrected severe CJVDs in young foals. The use of ESWT eliminates possible negative side effects of general anesthesia and surgical techniques to treat VDs. Future studies should include a control population, more severe cases, other types of angular limb deformities, and older foals.
基金supported by the National Natural Science Foundation of China(Nos.61275140,61370182,and11504255)the Natural Science Foundation of JiangsuProvince(No.DK20141232)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the National“863”Program of China
文摘A method for beam diffraction sidelobe suppression based on the combination of volume Bragg gratings(VBGs)with different thicknesses or periods for angular filtering is proposed and performed. Simulated and experimental results show that the beam diffraction sidelobe is reduced from 12% to less than 1% with the non-sidelobe angular filter. The non-sidelobe angular filtering based on VBGs with thicknesses of 2.5 and 2.9 mm is simulated and demonstrated. The near-field distribution of filtered beams through the non-sidelobe angular filter is obviously smoother than that of the single VBG. The near-field modulation and contrast ratio(C) of filtered beams are found to be improved 1.17 and 1.66 times that of the single VBG. The far-field C of the filtered beam is improved to about 100∶1 and the power spectral density analysis shows that the cutoff frequency of the angular filter is greatly optimized with the VBG combination.
基金support by the Central European Institute of Technology CEITEC(Project CZ.1.05/1.1.00/02.0068 and the European Regional Development Fund)
文摘Results of a large set of tensile and compressive creep tests on pure Al were reanalyzed for the influence of low-and high-angle grain boundaries on the deformation resistance at the temperature T = 473 K = 0.51 Tmwhere Tm is the melting point.Thermomechanical treatment by equal channel angular pressing followed by heating to T led to strong increase of areal fraction of high-angle boundaries in a structure of subgrains of ≈10^-6m in size,accompanied by significant reduction of subgrain strengthening and of the stress sensitivity of the deformation rate.(Sub)grain strengthening by low-angle boundaries is most effective;the strengthening effect virtually disappears during creep as the boundary spacings coarsen toward their stress-dependent,quasi-stationary size wqs.The same type of coarsening is found for(sub)grain structures with large fraction of high-angle boundaries;in the quasi-stationary state they lead to softening at low and strengthening at high stresses,and a significant increase in tensile fracture strain to values up to 0.8.The results are analogous to former results for Cu and are explained in the same way by the influence of boundaries on storage and recovery of crystal defects and the homogenization of glide.
文摘The hot ductility of 6061 aluminum alloy,which was subjected to two different severe plastic deformations(SPD),was studied at different temperatures and strain rates.The tensile tests were carried out at the temperature range of 300-500 ℃ and at the strain rates of 0.0005-0.01 s^(-1).The microstructure evolution was characterized using optical microscopy,transmission electron microscopy and X-ray diffraction technique.The influences of the microstructure after SPD,thermomechanical parameters(temperature and strain rate) and specimen size on the hot formability of this alloy were then analyzed.The results show that a decrease in grains/subgrains exhibited significant effect on the hot ductility of SPDed samples.The constitutive equations were then developed to model the hot formability of the studied alloy.The developed model can be represented by Zener-Hollomon parameter in a hyperbolic sinusoidal equation form.Both the changes of elongation to failure and Zener-Hollomon parameter indicate that the hot ductility of the alloy is more sensitive to the temperature rather than to the strain rate.The uniform elongation is independent of the specimen size,but the postnecking elongation increases dramatically as the ratio of l/A^(1/2) decreases.