Layered hydroxide metal acetate Co2(OH)3(CH3COO)·H2O with an interlayer spacing of 1.282 nm has been synthesized by a novel method which is employed in ethanol-aqueous mixed solvents media. Experiment results...Layered hydroxide metal acetate Co2(OH)3(CH3COO)·H2O with an interlayer spacing of 1.282 nm has been synthesized by a novel method which is employed in ethanol-aqueous mixed solvents media. Experiment results show that the purity of the product by the modified method is higher compared with that by the previous methods. A complete characterization of the as-prepared samples was performed by means of X-ray powder diffraction, IR spectroscopy, scanning electron microscope, as well as magnetic measurement. The facile and effective approach for the preparation of this compound in this study is very interesting and important because it has wide application in the field of anionic exchange reaction for the synthesis of hybrid organic-inorganic compounds.展开更多
Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report...Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.展开更多
基金Supported by the President Fund of Xi'an Technological University,China(No.XAGDXJJ1009)
文摘Layered hydroxide metal acetate Co2(OH)3(CH3COO)·H2O with an interlayer spacing of 1.282 nm has been synthesized by a novel method which is employed in ethanol-aqueous mixed solvents media. Experiment results show that the purity of the product by the modified method is higher compared with that by the previous methods. A complete characterization of the as-prepared samples was performed by means of X-ray powder diffraction, IR spectroscopy, scanning electron microscope, as well as magnetic measurement. The facile and effective approach for the preparation of this compound in this study is very interesting and important because it has wide application in the field of anionic exchange reaction for the synthesis of hybrid organic-inorganic compounds.
基金This work was supported by the National Key Sdentific Instrument and Equipment Development Project of China (No. 21627809), the National Natural Science Foundation of China (Nos. 21375047, 21377046, 21405059, 21575137, 21575050, and 21601064), Natural Science Foundation of Shandong Province (Nos. ZR2016JL013 and ZR2016BQ10), Graduate Innovation Foundation of University of Jinan (No. YCXB15004), and the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937).
文摘Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.