For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of sol...For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.展开更多
The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and ...The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and partial rate constants, k3 and k4 + k5, propagation orders with respect to monomer and active species concentrations, α and β, real activation energy, E, as well as partial activation energies, E3 and E4+5 and so on. The relationship between the microstruc-ture of polyisoprene and the ratio of [THF]/[n-BuLi] has been investigated. On the basis of the studies mentioned above, a reasonable mechanism of the anionic polymerization of isoprene in THF is proposed.展开更多
A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as graf...A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as grafting agent, a novel star-shaped branched polymer, containing several polyisobutylene, was prepared via cationic ~aolymerization. The star PS-b-PI and star-branched polyisobutylene were characterized by GPC, 'HNMR and FT-IR, and the effects of different adding order and the amount of grafting agent were investigated.展开更多
A simple new method for the syntheses of a highly soluble noncross linked C 60 styrene copolymers by means of lithium camphor initiated anionic polymerization reaction is demonstrated.
Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigat...Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10 degrees C. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 min. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.展开更多
Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as in...Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.展开更多
A new cyclic monomer, 2-methyl-2-methoxycarbonyl-5-methylene-1,3-dioxolan-4-one,was synthesized successfully. The monomer and intermediate were characterized by ~1H NMR, ^(13)CNMR, INEPT(Intensive Nuclei Enhanced by P...A new cyclic monomer, 2-methyl-2-methoxycarbonyl-5-methylene-1,3-dioxolan-4-one,was synthesized successfully. The monomer and intermediate were characterized by ~1H NMR, ^(13)CNMR, INEPT(Intensive Nuclei Enhanced by Polarization Transfer) technique, IR and elementalanalysis. Anionic polymerization of the monomer was carried out in anhydrous THF at -70℃,and 9-fluorenyllithium was used as initiator. The polymer structure was determined by IR, NMRand elemental analysis. Molecular weight of the polymer was estimated by viscosity measurementin DMSO at 30℃.展开更多
A new cyclic monomer, 2-methyl-2-methocycarbonyl-5-methylene 1,3-dioxlan-4-one,wassynthesized successfully. The monomer and intermediate were characterized by ~1H NMR,^(13)C NMR, INEPT (Intensive Nuclei Enhanced by Po...A new cyclic monomer, 2-methyl-2-methocycarbonyl-5-methylene 1,3-dioxlan-4-one,wassynthesized successfully. The monomer and intermediate were characterized by ~1H NMR,^(13)C NMR, INEPT (Intensive Nuclei Enhanced by Polarization Transfer) technique, IR andelemental analysis. Anionic polymerization of the monomer was carried out in anhydrous THF at.70℃, and 9-fluorenyllithium was used as initiator. The polymer strucure was determined byIR, NMR and elemental analysis. Molecular weight of the polymer was estimated by viscositymeasurement in DMSO at 30℃.展开更多
Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using c...Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using chiral binaphthyl crown ethers as ligands, respectively. The results showed that in the former case the PMMA obtained has mainly isotactic structure but without optical activity, while in the later case the PMMA produced predominately has syndiotactic structure also without optical activity.展开更多
20 wt% polyamide 12 (PA1212) pellets were dissolved in molten caprolactam. The caprolactam was then catalyzed at 180℃ and polymerized by means of anionic ring-opening polymerization to produce in situ blends of the...20 wt% polyamide 12 (PA1212) pellets were dissolved in molten caprolactam. The caprolactam was then catalyzed at 180℃ and polymerized by means of anionic ring-opening polymerization to produce in situ blends of the resultant polyamide 6 (PA6) and PA 1212. Mechanical blends with same ingredient were prepared through melt blending on a twin-screw extruder. Scanning electron microscopy (SEM) observation revealed that contrary to the mechanical blends with small spherulites embedded in the matrix, no phase-separation existed in the in situ blends. The results of thermal analysis by differential scanning calorimetry (DSC) showed that single melting peak and crystallization peak existed for the in situ blends, while two melting and crystallization peaks appeared for the mechanical blends. The in situ blend film and the mixed blend film, both cast from a dilute formic acid solution with a concentration of 0.5 g/L, remained similar crystallization and melting behavior as above. It is proved by solution 13C-NMR analysis that transamidation took place during the in situ blending, and it is suggested that the combination of temperature increasing and the basic surrounding derived from NaOH during polymerization resulted in the occurrence of transamidation. Furthermore, it is proposed that the interchange reaction between PA 1212 and PA6 also resulted from the degradative reaction during the anionic polymerization.展开更多
The hydroxyl-terminated polybutadiene (HTPB) possessing high content of 1,4-units was synthesized by anionic polymerization of butadiene, using alkyllithium containing silicon-protected hydroxyl group as initiator a...The hydroxyl-terminated polybutadiene (HTPB) possessing high content of 1,4-units was synthesized by anionic polymerization of butadiene, using alkyllithium containing silicon-protected hydroxyl group as initiator and cyclohexane as solvent. The polymers were characterized by GPC, IR and 1H-NMR. The mechanical properties of cured films were also evaluated. The results show that the content of 1,4-units for HTPBs made by anionic polymerization reaches up to 90%. The molecular weight distribution is very narrow (〈 1.05). The functionality of hydroxyl groups approaches 2. Compared with free radical HTPB, the elongation at break of anionic HTPB films increased by 70%, while the tensile strength remained nearly unchanged. This new HTPB can be very useful in solid propellant.展开更多
A series of 3-arm ABC and AA'B and 4-arm ABCD, AA'BC and AA'A"B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene, poly(a-methylstyrene)...A series of 3-arm ABC and AA'B and 4-arm ABCD, AA'BC and AA'A"B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene, poly(a-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene (DPE) chemistry. The DPE-functionalized polymers were synthesized by iterative methodology, and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers. The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide (MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments. The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well. Both approaches could afford the target heteroarm star polymers with predetermined molecular weight, narrow molecular weight distribution (Mw/Mn 〈 1.03) and desired composition, evidenced by SEC, 1H-NMR and SLS analyses. These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.展开更多
This work confirms the new view of the initiation and propagation mechanism of the anionic polymerization previously proposed, based on the investigation of anionic bulk-polymerization of styrene and α-methyl styrene...This work confirms the new view of the initiation and propagation mechanism of the anionic polymerization previously proposed, based on the investigation of anionic bulk-polymerization of styrene and α-methyl styrene with the help of a self designed microflow device and characterized by GPC and in situ ^7Li NMR. It was found that n-BuLl tended to form the hexameric-aggregated structure and even to form the huge aggregated structure based on the former. These aggregations of initiators could directly initiate the anionic polymerization and form the su-pramolecule aggregations. The supramolecule aggregations inevitably blocked the diffusion of the monomers to the ion-pairs and resulted in a stationary-conversion platform. Then the aggregators were dissociated completely into equal binary-aggregated species, and the polymerization continued again rapidly before the termination. Tetrahy-drofuran (THF) acted as the electron donator, which could push the electron cloud to Li cation and make the aggre- gated ring of the active species rather loosened and facilitated the monomer to insert in. Therefore, a little THF can greatly promote the anionic polymerization. However, further addition of THF might block the channel between the ion-pairs and decrease the propagation rate. It was also found that the aggregated structure of the active species during the anionic polymerization only depends on the initiator aggregations which were formed before the polym-erization.展开更多
Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the az...Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 ℃ in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.展开更多
Copolymers of 1,3-butadiene and p-methylstyrene (p-MS) were synthesized via anionic polymerization. A benzophenone-potassium complex was added to tune the reactivity ratio of the two monomers, leading to random and ...Copolymers of 1,3-butadiene and p-methylstyrene (p-MS) were synthesized via anionic polymerization. A benzophenone-potassium complex was added to tune the reactivity ratio of the two monomers, leading to random and gradient composition alonglthe copolymer chain. The overall composition and microstructure could be controlled and well characterized by GPC and H-NMR. The p-MS was distributed from gradient to random with increasing the content of the benzophenone-potassium complex, and the 1,2-microstrucmre in the polybutadiene sequence increased at the same time. The hydrogenation of the copolymer of 1,3-butadiene and p-MS resulted in the corresponding saturated copolymer with well- defined structure and narrow molecular weight distribution.展开更多
(−)-Menthyl(S)-6'-acrylyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate(3)was synthesized and anionically polymerized using n-BuLi as an initiator in toluene.The monomer 3 was levorotatory and had an[α]_(...(−)-Menthyl(S)-6'-acrylyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate(3)was synthesized and anionically polymerized using n-BuLi as an initiator in toluene.The monomer 3 was levorotatory and had an[α]_(D)^(25)value of−72.4,but its corresponding polymer poly-3 was dextrorotatory and showed an[α]_(D)^(25)value of+162.0.Poly-3 was confirmed to exist in the form of one-handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as(−)-menthyl(S)-6'-propionyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate 2b and(−)-menthyl(S)-6'-heptanoyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate 2c.This conclusion was also confirmed by the fact that the g-value of poly-3 is about 11 times of that of monomer 3.展开更多
Comb-like polyethylene(PE) was prepared via anionic polymerization combined with "graft-onto" process. The polybutadiene(PB) backbone underwent hydroxylation at 1,2-vinyl groups to obtain a controlled number of ...Comb-like polyethylene(PE) was prepared via anionic polymerization combined with "graft-onto" process. The polybutadiene(PB) backbone underwent hydroxylation at 1,2-vinyl groups to obtain a controlled number of hydroxyl groups along the main chain. After the translation of hydroxyl groups to tosyl groups, a nucleophilic substitution by living anionic PB chains was achieved. The comb PE was finally obtained by the hydrogenation of the obtained unsaturated comb polymer. Since the living anionic polymerization was used to prepare the backbones and the branch chains, molecular weight to molecular weight distribution(Mw/Mn〈1.5) can be well-controlled in the final comb polymer, including the average number and length of branches.展开更多
Thermal,mechanical,and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure.The use of polar modifier in association with alkyllithium is a well-known me...Thermal,mechanical,and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure.The use of polar modifier in association with alkyllithium is a well-known method to obtain polybutadiene with a high vinyl con tent.Another approach is to use bimetallic initiating species such as alkyllithium combined to heavier alkali metal alkoxide(RONa,ROK...).The polymerization control is n evertheless not achieved and several parameters were found to influe nee it.Using bimetallic in itiating systems based on alkyllithium and a potassium alkoxide,alkyllithium structure,initiator preformation time,and initiator composition were identified as parameters influencing the anionic polymerization process of butadiene and/or polybutadiene microstructure.In addition,the use of trimetallic systems based on alkyllithium,potassium alkoxide,and alkylaluminum was investigated in order to prevent side reactions regardless of the[K]/[Li]ratio and of the initiator preformation time.展开更多
This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved ...This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved by adding lithium phenoxide.More than 60%n-BuLi in THF was alive with the presence of lithium phenoxide after stirring at 0℃ for 20 min,compared to 2%under same conditions but without lithium phenoxide.The propagation of polymerization of styrene(St)and methyl methacrylate(MMA)were retarded after adding lithium phenoxide.And by adding more than 10 fold lithium phenoxide,completed conversion was achieved in the polymerization of MMA in THF at 0℃.The lithium phenoxide showed both promoting and inhibiting effects in the polymerization of isoprene(Ip):it promoted the formation of 3,4-structure,while mitigated the formation of 1,2-and 1,4-structures.In general,the polymerization rate of Ip was promoted by lithium phenoxide.展开更多
It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide ...It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide (t-BuOK) was chosen to initiate the anionic polymerization of 2-ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30 ℃, and above 95% at 60 ℃ without side reaction inhibitors. The high conversions implied t-BuOK could suppress the side reactions. A series of block copolymers of EHMA, n-hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0 ℃, and the conversions were all above 99%. The GPC and IH NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t-BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20 ℃ and 60 ℃, respectively, which deviated from -2 ℃ and 105 ℃ of homopolymer, respectively, due to the partial com- patibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.展开更多
基金financially supported by the National Natural Science Foundation of China(U21A20313,22222807)。
文摘For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.
文摘The kinetic study of the anionic polymerization of isoprene is carried out in tetrahy-drofuran(THF), using n-BuLi as initiator. Kinetic parameters are obtained, which comprise chain propagation rate constant, kp, and partial rate constants, k3 and k4 + k5, propagation orders with respect to monomer and active species concentrations, α and β, real activation energy, E, as well as partial activation energies, E3 and E4+5 and so on. The relationship between the microstruc-ture of polyisoprene and the ratio of [THF]/[n-BuLi] has been investigated. On the basis of the studies mentioned above, a reasonable mechanism of the anionic polymerization of isoprene in THF is proposed.
文摘A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as grafting agent, a novel star-shaped branched polymer, containing several polyisobutylene, was prepared via cationic ~aolymerization. The star PS-b-PI and star-branched polyisobutylene were characterized by GPC, 'HNMR and FT-IR, and the effects of different adding order and the amount of grafting agent were investigated.
文摘A simple new method for the syntheses of a highly soluble noncross linked C 60 styrene copolymers by means of lithium camphor initiated anionic polymerization reaction is demonstrated.
基金supported by the National Natural Science Foundation of China(No.20374005)China Petroleum &Chemical Corporation.
文摘Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10 degrees C. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 min. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.
基金The Project is supported by the National Natural Science Foundation of China (Grant No. 29634010-2), Shanghai Education Development Foundation Shuguang Program (Project SG97008) and Research Institute of Beijing Yanshan Petrochemical Corporation.
文摘Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.
文摘A new cyclic monomer, 2-methyl-2-methoxycarbonyl-5-methylene-1,3-dioxolan-4-one,was synthesized successfully. The monomer and intermediate were characterized by ~1H NMR, ^(13)CNMR, INEPT(Intensive Nuclei Enhanced by Polarization Transfer) technique, IR and elementalanalysis. Anionic polymerization of the monomer was carried out in anhydrous THF at -70℃,and 9-fluorenyllithium was used as initiator. The polymer structure was determined by IR, NMRand elemental analysis. Molecular weight of the polymer was estimated by viscosity measurementin DMSO at 30℃.
文摘A new cyclic monomer, 2-methyl-2-methocycarbonyl-5-methylene 1,3-dioxlan-4-one,wassynthesized successfully. The monomer and intermediate were characterized by ~1H NMR,^(13)C NMR, INEPT (Intensive Nuclei Enhanced by Polarization Transfer) technique, IR andelemental analysis. Anionic polymerization of the monomer was carried out in anhydrous THF at.70℃, and 9-fluorenyllithium was used as initiator. The polymer strucure was determined byIR, NMR and elemental analysis. Molecular weight of the polymer was estimated by viscositymeasurement in DMSO at 30℃.
基金This work was supported by the National Natural Science Foundation of China (No. 29974034).
文摘Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using chiral binaphthyl crown ethers as ligands, respectively. The results showed that in the former case the PMMA obtained has mainly isotactic structure but without optical activity, while in the later case the PMMA produced predominately has syndiotactic structure also without optical activity.
基金This work was financially supported by the National Natural Science Foundation of China(No.50373037).
文摘20 wt% polyamide 12 (PA1212) pellets were dissolved in molten caprolactam. The caprolactam was then catalyzed at 180℃ and polymerized by means of anionic ring-opening polymerization to produce in situ blends of the resultant polyamide 6 (PA6) and PA 1212. Mechanical blends with same ingredient were prepared through melt blending on a twin-screw extruder. Scanning electron microscopy (SEM) observation revealed that contrary to the mechanical blends with small spherulites embedded in the matrix, no phase-separation existed in the in situ blends. The results of thermal analysis by differential scanning calorimetry (DSC) showed that single melting peak and crystallization peak existed for the in situ blends, while two melting and crystallization peaks appeared for the mechanical blends. The in situ blend film and the mixed blend film, both cast from a dilute formic acid solution with a concentration of 0.5 g/L, remained similar crystallization and melting behavior as above. It is proved by solution 13C-NMR analysis that transamidation took place during the in situ blending, and it is suggested that the combination of temperature increasing and the basic surrounding derived from NaOH during polymerization resulted in the occurrence of transamidation. Furthermore, it is proposed that the interchange reaction between PA 1212 and PA6 also resulted from the degradative reaction during the anionic polymerization.
文摘The hydroxyl-terminated polybutadiene (HTPB) possessing high content of 1,4-units was synthesized by anionic polymerization of butadiene, using alkyllithium containing silicon-protected hydroxyl group as initiator and cyclohexane as solvent. The polymers were characterized by GPC, IR and 1H-NMR. The mechanical properties of cured films were also evaluated. The results show that the content of 1,4-units for HTPBs made by anionic polymerization reaches up to 90%. The molecular weight distribution is very narrow (〈 1.05). The functionality of hydroxyl groups approaches 2. Compared with free radical HTPB, the elongation at break of anionic HTPB films increased by 70%, while the tensile strength remained nearly unchanged. This new HTPB can be very useful in solid propellant.
基金supported by the National Natural Science Foundation of China(Nos.20844001 and 20874067)the Key Project of Chinese Ministry of Education(No.209049)Natural Science Fund for Colleges and Universities of Jiangsu Province(No.08KJB150015).
文摘A series of 3-arm ABC and AA'B and 4-arm ABCD, AA'BC and AA'A"B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene, poly(a-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene (DPE) chemistry. The DPE-functionalized polymers were synthesized by iterative methodology, and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers. The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide (MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments. The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well. Both approaches could afford the target heteroarm star polymers with predetermined molecular weight, narrow molecular weight distribution (Mw/Mn 〈 1.03) and desired composition, evidenced by SEC, 1H-NMR and SLS analyses. These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.
基金Financial supports for this work from the Nature Science Foundation of China for the Major Program (No. 50933002), the National High Technology Re-search and Development Program of China (863 Pro-gram, No. 2012AA040306) and Shanghai Leading Academic Discipline Project (No. B502) are gratefully acknowledged.
文摘This work confirms the new view of the initiation and propagation mechanism of the anionic polymerization previously proposed, based on the investigation of anionic bulk-polymerization of styrene and α-methyl styrene with the help of a self designed microflow device and characterized by GPC and in situ ^7Li NMR. It was found that n-BuLl tended to form the hexameric-aggregated structure and even to form the huge aggregated structure based on the former. These aggregations of initiators could directly initiate the anionic polymerization and form the su-pramolecule aggregations. The supramolecule aggregations inevitably blocked the diffusion of the monomers to the ion-pairs and resulted in a stationary-conversion platform. Then the aggregators were dissociated completely into equal binary-aggregated species, and the polymerization continued again rapidly before the termination. Tetrahy-drofuran (THF) acted as the electron donator, which could push the electron cloud to Li cation and make the aggre- gated ring of the active species rather loosened and facilitated the monomer to insert in. Therefore, a little THF can greatly promote the anionic polymerization. However, further addition of THF might block the channel between the ion-pairs and decrease the propagation rate. It was also found that the aggregated structure of the active species during the anionic polymerization only depends on the initiator aggregations which were formed before the polym-erization.
基金financially supported by the National Natural Science Foundation of China(Nos.51233005,21004060 and 51073149)
文摘Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 ℃ in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.
基金the National Natural Science Foundation of China(Nos.51073149 and 51233005)
文摘Copolymers of 1,3-butadiene and p-methylstyrene (p-MS) were synthesized via anionic polymerization. A benzophenone-potassium complex was added to tune the reactivity ratio of the two monomers, leading to random and gradient composition alonglthe copolymer chain. The overall composition and microstructure could be controlled and well characterized by GPC and H-NMR. The p-MS was distributed from gradient to random with increasing the content of the benzophenone-potassium complex, and the 1,2-microstrucmre in the polybutadiene sequence increased at the same time. The hydrogenation of the copolymer of 1,3-butadiene and p-MS resulted in the corresponding saturated copolymer with well- defined structure and narrow molecular weight distribution.
基金We gratefully acknowledge the National Natural Science Foundation of China(No.21172186)for finan-cial support of this work.
文摘(−)-Menthyl(S)-6'-acrylyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate(3)was synthesized and anionically polymerized using n-BuLi as an initiator in toluene.The monomer 3 was levorotatory and had an[α]_(D)^(25)value of−72.4,but its corresponding polymer poly-3 was dextrorotatory and showed an[α]_(D)^(25)value of+162.0.Poly-3 was confirmed to exist in the form of one-handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as(−)-menthyl(S)-6'-propionyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate 2b and(−)-menthyl(S)-6'-heptanoyl-2'-methyloxy-1,1'-binaphthalene-2-carboxylate 2c.This conclusion was also confirmed by the fact that the g-value of poly-3 is about 11 times of that of monomer 3.
基金Supported by the National Natural Science Foundation of China(Nos.51073149, 51233005).
文摘Comb-like polyethylene(PE) was prepared via anionic polymerization combined with "graft-onto" process. The polybutadiene(PB) backbone underwent hydroxylation at 1,2-vinyl groups to obtain a controlled number of hydroxyl groups along the main chain. After the translation of hydroxyl groups to tosyl groups, a nucleophilic substitution by living anionic PB chains was achieved. The comb PE was finally obtained by the hydrogenation of the obtained unsaturated comb polymer. Since the living anionic polymerization was used to prepare the backbones and the branch chains, molecular weight to molecular weight distribution(Mw/Mn〈1.5) can be well-controlled in the final comb polymer, including the average number and length of branches.
文摘Thermal,mechanical,and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure.The use of polar modifier in association with alkyllithium is a well-known method to obtain polybutadiene with a high vinyl con tent.Another approach is to use bimetallic initiating species such as alkyllithium combined to heavier alkali metal alkoxide(RONa,ROK...).The polymerization control is n evertheless not achieved and several parameters were found to influe nee it.Using bimetallic in itiating systems based on alkyllithium and a potassium alkoxide,alkyllithium structure,initiator preformation time,and initiator composition were identified as parameters influencing the anionic polymerization process of butadiene and/or polybutadiene microstructure.In addition,the use of trimetallic systems based on alkyllithium,potassium alkoxide,and alkylaluminum was investigated in order to prevent side reactions regardless of the[K]/[Li]ratio and of the initiator preformation time.
基金Financial supports for this work from the Natural Science Foundation of China for the Major Program(No.50933002)the National High Technology Research and Development Program of China(863 Program,No.2012AA040306)Shanghai Leading Academic Discipline Project(No.B502)are gratefully acknowledged.
文摘This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved by adding lithium phenoxide.More than 60%n-BuLi in THF was alive with the presence of lithium phenoxide after stirring at 0℃ for 20 min,compared to 2%under same conditions but without lithium phenoxide.The propagation of polymerization of styrene(St)and methyl methacrylate(MMA)were retarded after adding lithium phenoxide.And by adding more than 10 fold lithium phenoxide,completed conversion was achieved in the polymerization of MMA in THF at 0℃.The lithium phenoxide showed both promoting and inhibiting effects in the polymerization of isoprene(Ip):it promoted the formation of 3,4-structure,while mitigated the formation of 1,2-and 1,4-structures.In general,the polymerization rate of Ip was promoted by lithium phenoxide.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 50933002, 51373052, 51573043).
文摘It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide (t-BuOK) was chosen to initiate the anionic polymerization of 2-ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30 ℃, and above 95% at 60 ℃ without side reaction inhibitors. The high conversions implied t-BuOK could suppress the side reactions. A series of block copolymers of EHMA, n-hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0 ℃, and the conversions were all above 99%. The GPC and IH NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t-BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20 ℃ and 60 ℃, respectively, which deviated from -2 ℃ and 105 ℃ of homopolymer, respectively, due to the partial com- patibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.