The Wilson finite element method is considered to solve a class of two- dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain...The Wilson finite element method is considered to solve a class of two- dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain the superclose and global superconvergence on anisotropic meshes. Numerical example is also given to confirm our theoretical analysis.展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature ...In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature in the procedure of computing the left load), we obtain the optimal estimate O(h), which is as same as in the traditionalfinite element analysis when the load f ∈ H1 (Ω)η Co(Ω) which is weaker than the previousstudies. The results obtained in this paper are also valid to the conforming triangular elementand nonconforming Carey's element.展开更多
In this paper, the convergence analysis of the famous Carey element in 3-D is studied on anisotropic meshes. The optimal error estimate is obtained based on some novel techniques and approach, which extends its applic...In this paper, the convergence analysis of the famous Carey element in 3-D is studied on anisotropic meshes. The optimal error estimate is obtained based on some novel techniques and approach, which extends its applications.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
The class of anisotropic meshes we conceived abandons the regular assumption. Some distinct properties of Carey's element are used to deal with the superconvergence for a class of two- dimensional second-order ellipt...The class of anisotropic meshes we conceived abandons the regular assumption. Some distinct properties of Carey's element are used to deal with the superconvergence for a class of two- dimensional second-order elliptic boundary value problems on anisotropic meshes. The optimal results are obtained and numerical examples are given to confirm our theoretical analysis.展开更多
This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxi...This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.展开更多
The main aim of this paper is to study tile convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derive...The main aim of this paper is to study tile convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derived for arbitrary triangular meshes (which even need not satisfy the maximal angle condition and the coordinate system condition ), the optimal consistency error is obtained for a family of anisotropically graded finite element meshes.展开更多
The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence indepe...The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works .展开更多
Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to pres...Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.展开更多
This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this elem...This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L^2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.展开更多
The nonconforming Crouzeix-Raviart type linear triangular finite element approximate to second-order elliptic problems is studied on anisotropic general triangular meshes in 2D satisfying the maximal angle condition a...The nonconforming Crouzeix-Raviart type linear triangular finite element approximate to second-order elliptic problems is studied on anisotropic general triangular meshes in 2D satisfying the maximal angle condition and the coordinate system condition. The optimal-order error estimates of the broken energy norm and L2-norm are obtained.展开更多
Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand...Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.展开更多
In this paper, a new proof of superclose of a Crouzeix-Raviart type finite element is given for second order elliptic boundary value problem by Bramble-Hilbert lemma on anisotropic meshes.
By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the m...By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation,the mixed case contains a special time-space coupled derivative,which leads to many difficulties in numerical analysis.Firstly,a fully discrete scheme is established by using nonconforming finite element method(FEM)in spatial direction and L1 approximation coupled with Crank-Nicolson(L1-CN)scheme in temporal direction.Furthermore,the fully discrete scheme is proved to be unconditional stable.Besides,convergence and superclose results are derived by using the properties of EQ^(ROT)_(1) nonconforming finite element.What's more,the global superconvergence is obtained via the interpolation postprocessing technique.Finally,several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes.展开更多
This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superc...This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.展开更多
A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis i...A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis is presented and the error estimates are obtained by using the interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the convergence analysis of traditional finite element methods in previous literature.展开更多
The main aim of this paper is to study the nonconforming linear triangular Crouzeix- Raviart type finite element approximation of planar linear elasticity problem with the pure displacement boundary value on anisotrop...The main aim of this paper is to study the nonconforming linear triangular Crouzeix- Raviart type finite element approximation of planar linear elasticity problem with the pure displacement boundary value on anisotropic general triangular meshes satisfying the maximal angle condition and coordinate system condition. The optimal order error estimates of energy norm and L2-norm are obtained, which are independent of lame parameter λ. Numerical results are given to demonstrate the validity of our theoretical analysis.Mathematics subject classification: 65N30, 65N15.展开更多
A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtaine...A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10371113)
文摘The Wilson finite element method is considered to solve a class of two- dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain the superclose and global superconvergence on anisotropic meshes. Numerical example is also given to confirm our theoretical analysis.
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
基金Supported by NNSF of China(10371113)Supported by Foundation of Overseas Scholar of Chin&((2001)119)Supported by the project of Creative Engineering of Henan Province of China
文摘In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature in the procedure of computing the left load), we obtain the optimal estimate O(h), which is as same as in the traditionalfinite element analysis when the load f ∈ H1 (Ω)η Co(Ω) which is weaker than the previousstudies. The results obtained in this paper are also valid to the conforming triangular elementand nonconforming Carey's element.
文摘In this paper, the convergence analysis of the famous Carey element in 3-D is studied on anisotropic meshes. The optimal error estimate is obtained based on some novel techniques and approach, which extends its applications.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金Supported by the National Natural Science Foundation of China(No.10671184).
文摘A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
基金The research is Supported by National Natural Science Foundation of China under Grant No. 10371113
文摘The class of anisotropic meshes we conceived abandons the regular assumption. Some distinct properties of Carey's element are used to deal with the superconvergence for a class of two- dimensional second-order elliptic boundary value problems on anisotropic meshes. The optimal results are obtained and numerical examples are given to confirm our theoretical analysis.
基金Supported by National Science Foundation of China(No.10971203No.11271340)Research Fund for the Doctoral Program of Higher Education of China(No.20094101110006)
文摘This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.
文摘The main aim of this paper is to study tile convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derived for arbitrary triangular meshes (which even need not satisfy the maximal angle condition and the coordinate system condition ), the optimal consistency error is obtained for a family of anisotropically graded finite element meshes.
基金the National Natural Science Foundation of China under the grant 10771198
文摘The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works .
文摘Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.
基金Supported by the National Natural Science Foundation of China(10371113,10671184)
文摘This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L^2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.
基金supported by the National Natural Science Foundation of China (No. 10971203)
文摘The nonconforming Crouzeix-Raviart type linear triangular finite element approximate to second-order elliptic problems is studied on anisotropic general triangular meshes in 2D satisfying the maximal angle condition and the coordinate system condition. The optimal-order error estimates of the broken energy norm and L2-norm are obtained.
基金Supported by the National Natural Science Foundation of China (10791203, 11271340)the Natural Science Foundation of Henan Province (112300410109)
文摘Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.
基金Supported by the NSF of China(10471133)Supported by the NSF of Henan Province(0611053100)Supported by the NSF of Education Committee of Henan Province(2006110011)
文摘In this paper, a new proof of superclose of a Crouzeix-Raviart type finite element is given for second order elliptic boundary value problem by Bramble-Hilbert lemma on anisotropic meshes.
基金National Natural Science Foundation of China(No.11971416)Scientific Research Innovation Team of Xuchang University(No.2022CXTD002)+3 种基金Foundation for University Key Young Teacher of Henan Province(No.2019GGJS214)Key Scientific Research Projects in Universities of Henan Province(Nos.21B110007,22A110022)National Natural Science Foundation of China(International cooperation key project:No.12120101001)Australian Research Council via the Discovery Project(DP190101889).
文摘By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation,the mixed case contains a special time-space coupled derivative,which leads to many difficulties in numerical analysis.Firstly,a fully discrete scheme is established by using nonconforming finite element method(FEM)in spatial direction and L1 approximation coupled with Crank-Nicolson(L1-CN)scheme in temporal direction.Furthermore,the fully discrete scheme is proved to be unconditional stable.Besides,convergence and superclose results are derived by using the properties of EQ^(ROT)_(1) nonconforming finite element.What's more,the global superconvergence is obtained via the interpolation postprocessing technique.Finally,several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes.
基金This research is supported by the National Natural Science Foundation of China(No.10371113) Foundation of Oversea Scholar of China(No.2001(119)) the Project of Creative Engineering of Henan Province of China 2002(219) NSF of Henan Province of China.
文摘This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10671184 and 10971203.
文摘A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis is presented and the error estimates are obtained by using the interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the convergence analysis of traditional finite element methods in previous literature.
基金Acknowledgments. This work was supported by National Natural Science Foundation of China (No. 10971203), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20094101110006), the Educational Department Foundation of Henan Province of China (No.2009B110013).
文摘The main aim of this paper is to study the nonconforming linear triangular Crouzeix- Raviart type finite element approximation of planar linear elasticity problem with the pure displacement boundary value on anisotropic general triangular meshes satisfying the maximal angle condition and coordinate system condition. The optimal order error estimates of energy norm and L2-norm are obtained, which are independent of lame parameter λ. Numerical results are given to demonstrate the validity of our theoretical analysis.Mathematics subject classification: 65N30, 65N15.
基金supported by the National Natural Science Foundation of China under Grant No. 10671184.
文摘A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.