Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not...Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.展开更多
目的:探讨血清生物标志物甲胎蛋白(AFP)、维生素K缺失或拮抗剂Ⅱ诱导的蛋白质(PIVKA-Ⅱ)和磷脂酰肌醇蛋白聚糖3(GPC-3)单独或联合用于肝细胞癌(以下简称肝癌)诊断的价值。方法:检索PubMed、Web of Science、Embase三个数据库,收集2002...目的:探讨血清生物标志物甲胎蛋白(AFP)、维生素K缺失或拮抗剂Ⅱ诱导的蛋白质(PIVKA-Ⅱ)和磷脂酰肌醇蛋白聚糖3(GPC-3)单独或联合用于肝细胞癌(以下简称肝癌)诊断的价值。方法:检索PubMed、Web of Science、Embase三个数据库,收集2002年以来发表的AFP、PIVKA-Ⅱ和GPC-3单独或联合用于诊断肝癌的文献。根据纳入和排除标准筛选文献并提取相关数据。利用诊断准确性研究的质量评价(QUADAS)检查表对纳入的文献进行质量评价,并采用Meta DiSc软件、Review Manager 5.4软件和Stata 15.1软件对AFP、PIVKA-Ⅱ和GPC-3单用和联合使用诊断肝癌的受试者工作特征曲线下面积(AUC)、敏感度、特异度等指标进行数据分析。结果:共纳入32篇文献。Meta分析结果显示,单个标志物用于诊断肝癌时,PIVKA-Ⅱ的AUC值最高,为0.88(95%CI:0.85~0.91),其次是GPC-3和AFP;多个标志物联合用于诊断肝癌的AUC均高于单个标志物,其中PIVKA-Ⅱ联合GPC-3诊断的AUC值最高,为0.90(95%CI:0.87~0.92)。单个标志物用于诊断肝癌时,PIVKA-Ⅱ和GPC-3的敏感度相对较高(分别为0.75和0.76),但GPC-3的特异度不如PIVKA-Ⅱ和AFP(AFP、PIVKA-Ⅱ和GPC-3分别为0.87、0.88和0.81);多个标志物联合用于诊断肝癌的敏感度较单个标志物诊断时有所提高,但特异度无明显提高。单个标志物用于诊断肝癌时,PIVKA-Ⅱ的诊断比值比(DOR)最高,为22(95%CI:13~36),其次是GPC-3和AFP;两个标志物联合用于诊断肝癌的DOR均高于单个标志物,其中AFP联合GPC-3诊断的DOR最高,为25(95%CI:9~67);三个标志物联合用于诊断肝癌时的DOR明显降低,为10(95%CI:7~45)。结论:单个标志物用于肝癌诊断时,PIVKA-Ⅱ的诊断价值更高。两种标志物联合能显著提高肝癌诊断的敏感度,三种标志物联合未能进一步提高诊断价值。结合临床实际,推荐AFP联合PIVKA-Ⅱ用于肝癌的诊断。展开更多
基金supported by grants from the National Health and Medical Research Council(NHMRC)of Australia(Nos.571100 and 1048082)the Baxter Charitable Foundation(to TCL)+1 种基金Medical Research grants from the Rebecca L.Cooper Medical Research Foundation(to MWW,TCL,and MDL)supported by a Charles D.Kelman,M.D.Postdoctoral Award(2010)from the International Retinal Research Foundation(USA)。
文摘Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.