Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was appli...Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28’E and 42°24’N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.展开更多
A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree, Sapindus mukorassi, was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western-blot, immu...A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree, Sapindus mukorassi, was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western-blot, immuno-histochemical localization, light- and electro-microscopy, together with analysis of proteinase inhibitor activity of the purified VSP in vitro. There were two proteins with molecular masses of about 23 and 27 kDa in a relatively high content in the bark tissues of terminal branches of S. mukorassi in leafless periods. The proteins decreased markedly during young shoot development, indicating their role in seasonal nitrogen storage. Immuno-histochemical localization with the polyclonal antibodies raised against the 23 kDa protein demonstrated that the 23 kDa protein was the major component of protein inclusions in protein-storing cells. The protein inclusions were identified by protein-specific staining and should correspond to the electron-dense materials in different forms in the vacuoles of phloem parenchyma cells and phloem ray parenchyma cells under an electron microscope. So, the 23 kDa protein was a typical VSP in S. mukorassi. The 23 and 27 kDa proteins shared no immuno-relatedness, whereas the 23 kDa protein was immuno-related with the 22 kDa VSP in lychee and possessed trypsin inhibitor activity. The 23 kDa protein may confer dual functions: nitrogen storage and defense.展开更多
基金This study was supported by the State Key Basic Research Project (Grant No. 2002CB412502) the Innovation Study Key Project of the Chinese Academy of Sciences (Grant No. KZCX1-SW-01- 01)+1 种基金 the Young Scientist Project of National Natural Sci-ences Foundation (Grant No. 30500079) the Key Pro-ject of National Natural Sciences Foundation (Grant No.90411020).
文摘Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28’E and 42°24’N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.
基金Supported by the National Natural Science Foundation of China(No.30460107)
文摘A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree, Sapindus mukorassi, was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western-blot, immuno-histochemical localization, light- and electro-microscopy, together with analysis of proteinase inhibitor activity of the purified VSP in vitro. There were two proteins with molecular masses of about 23 and 27 kDa in a relatively high content in the bark tissues of terminal branches of S. mukorassi in leafless periods. The proteins decreased markedly during young shoot development, indicating their role in seasonal nitrogen storage. Immuno-histochemical localization with the polyclonal antibodies raised against the 23 kDa protein demonstrated that the 23 kDa protein was the major component of protein inclusions in protein-storing cells. The protein inclusions were identified by protein-specific staining and should correspond to the electron-dense materials in different forms in the vacuoles of phloem parenchyma cells and phloem ray parenchyma cells under an electron microscope. So, the 23 kDa protein was a typical VSP in S. mukorassi. The 23 and 27 kDa proteins shared no immuno-relatedness, whereas the 23 kDa protein was immuno-related with the 22 kDa VSP in lychee and possessed trypsin inhibitor activity. The 23 kDa protein may confer dual functions: nitrogen storage and defense.