High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic...High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.展开更多
Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we exam...Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.展开更多
Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAP...Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.展开更多
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a...Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.展开更多
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow...Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.展开更多
This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular...This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.展开更多
BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations,multiple subtypes,and unknown etiology and pathogenesis.Existing studies regarding GA in children are scarce.AIM To examine the correlation between ...BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations,multiple subtypes,and unknown etiology and pathogenesis.Existing studies regarding GA in children are scarce.AIM To examine the correlation between clinical manifestation and histopathology of pediatric GA.METHODS A total of 39 patients under 18 years of age with both a clinical and pathological diagnosis of GA at Kunming Children's Hospital from 2017 to 2022 were retrieved.Their medical records were consulted,and clinical data of the children were recorded and summarized,including gender,age,disease site,etc.Existing wax blocks of skin lesion specimens of children and pathological films were retrieved for further study and relevant histology,including hematoxylin-eosin,Alcian blue,elastic fiber(Victoria blue-Lichon red method),and antacid staining.Finally,the children’s clinical manifestations,histopathological results,and special staining characteristics were analyzed.RESULTS The clinical manifestations of granuloma annulare in children were diverse:11 cases presented with a single lesion,25 with multiple lesions,and 3 with generalized lesions.The pathological typing comprised histiocytic infiltration,palisading granuloma,epithelioid nodular,and mixed types in 4,11,9,and 15 cases,respectively.Thirty-nine cases were negative for antacid staining.The positive rate of Alcian blue staining was 92.3%,and that of elastic fiber staining was 100%.The degree of elastic fiber dissolution and granuloma annulare histopathological typing were positively correlated(r=0.432,P<0.05).No correlation was found between clinical presentation and histopathological typing of the granuloma annulare in children.In the pathological diagnosis of granuloma annulare,the positive elastic fiber staining rate was higher than that of Alcian blue staining.A correlation was found between elastic fiber dissolution degree and histopathological staging.However,the differences in pathological staging may have been related to the pathological manifestation of granuloma annulare at different periods.CONCLUSION Elastic fiber degradation may be a critical step in the pathogenesis of pediatric granuloma annulare.This is also one of the first studies focused on granuloma annulare in children.展开更多
BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations including papules,plaques,and nodules on the extremities that are skin-colored,pink,or purple.Approximately 15%of all GA cases are considered genera...BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations including papules,plaques,and nodules on the extremities that are skin-colored,pink,or purple.Approximately 15%of all GA cases are considered generalized GA.CASE SUMMARY Herein,we describe the case of a pediatric patient who initially presented with papules and later developed generalized atrophic macules.Upon examination,two different morphologic lesions were histopathologically confirmed:Epithelioid nodular GA and scattered histiocytic infiltrative GA.This patient exhibited rare clinical manifestations that differed throughout the course of the disease.The varying histopathological types and clinical manifestations of GA may be linked to the different stages of the disease.CONCLUSION This rare case demonstrates the different histopathological features of different stages and clinical manifestations of granuloma annulare in an infant.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conser...It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stir...A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.展开更多
The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annu...The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.展开更多
The cylindrical worm processed by annular grinding wheel envelope in two degree of freedom motion state is a novel worm. This paper explains the shaping principle of such a worm. To improve meshing quality and the p...The cylindrical worm processed by annular grinding wheel envelope in two degree of freedom motion state is a novel worm. This paper explains the shaping principle of such a worm. To improve meshing quality and the properties of contact and lubrication, the multi objective optimization has been conducted for the first time to the parameters of such a worm pair by the fuzzy optimal method. The results show that, the shape of the contact line is visibly more sloped than before being optimized, lubrication angle is apparently bigger, and the distribution of contact lines is much improved.展开更多
The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vort...The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.展开更多
This paper provided an efficient single pass severe plastic deformation(SPD)method,annular channel angular extrusion(ACAE),for fabricating AZ80 magnesium alloy shell part.The effect of ACAE process on the microstructu...This paper provided an efficient single pass severe plastic deformation(SPD)method,annular channel angular extrusion(ACAE),for fabricating AZ80 magnesium alloy shell part.The effect of ACAE process on the microstructure homogeneity,texture,and mechanical properties of extruded part was experimentally investigated.For comparison,conventional backward extrusion(BE)was also conducted on processing AZ80 part with same specification.The results showed that ACAE process has a better capacity to refine the microstructure and dramatic improve the deformation homogeneity of the extruded part than BE process.Due to two strong shear deformations were implemented,ACAE process could also concurrently modify the basal texture more notably than BE process.In particular,a bimodal texture was found in ACAE extruded part,which was greatly related to the enhanced synergetic action of basal slip and secondary<c+a>slip caused by the effective shear stress.More uniform and superior hardness along the thickness and height of part were achieved via ACAE process.Further surveying of tensile tests also showed that the part fabricated by ACAE process exhibited significantly higher and far more homogeneous tensile properties with an excellent balance of strength and ductility.The remarkable enhanced tensile properties of ACAE extruded part could be primarily attributed to the significant grain refinement,which provided a powerful grain boundary strengthening effect and meaningfully suppressed the development of twin-sized cracks during tensile deformation.It was established that ACAE process seemed to be a very promising single pass SPD method for manufacturing Mg-based alloy shell parts with more homogeneous microstructure and superior performance.展开更多
The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while ...The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.展开更多
Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for R...Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydrodynamic characteristics of the extraction systems in ACCs. The phase ratio (R = Vaq/Vorg, A/O) and liquid holdup volume (V) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the V and R (A/O) of a φ20 ACC by using a 30%TBP/kerosene- HNO3 solution system. The results showed that the operational and structural parameters had different effects on the V and R (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid holdup volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.展开更多
基金National Research Foundation(NRF)Singapore,under its NRF Fellowship(Grant No.NRFNRFF11-2019-0002).
文摘High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.
基金The Key Research&Development Program of the Ministry of Science and Technology of China under contract No.2022YFC2807601the National Natural Science Foundation of China under contract Nos 41941008 and 41876221+3 种基金the Fund of Shanghai Science and Technology Committee under contract Nos 20230711100 and 21QA1404300the Impact and Response of Antarctic Seas to Climate Change funded by the Chinese Arctic and Antarctic Administration under contract No.IRASCC 1-02-01Bthe National Key Research and Development Program of China under contract No.2019YFC1509102the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University under contract No.21TQ1400201。
文摘Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.
文摘Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.
基金supported by the National Key Research and Development Project[grant number 2020YFA0608902]the Natural Science Foundation of Guangdong Province[grant number 2023A1515010889].
基金Central Applied Research Laboratory(CARL)Center of Materials ResearchDepartment of Materials Science and Metallurgy,Shahid Bahonar University of Kerman(SBUK)for support of this work。
文摘Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.
基金the National Natural Science Foundation of China(22178241,21908152 and 21978189)State Key Laboratory of Chemical Engineering,China(SKL-ChE-21A01).
文摘Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.
基金supported in part by the National Key Research and Development Program of China(2021YFB3900300)in part by the National Natural Science Foundation of China(62201416)+2 种基金in part by the Fundamental Research Funds for the Central Universities(QTZX23070)in part by the Qin Chuang Yuan High-Level Innovative and Entrepreneurial Talents Project(QCYRCXM-2022-314)in part by Singapore Ministry of Education Academic Research Fund Tier 1。
文摘This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.
基金Supported by Spring City Project Famous Doctor Special
文摘BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations,multiple subtypes,and unknown etiology and pathogenesis.Existing studies regarding GA in children are scarce.AIM To examine the correlation between clinical manifestation and histopathology of pediatric GA.METHODS A total of 39 patients under 18 years of age with both a clinical and pathological diagnosis of GA at Kunming Children's Hospital from 2017 to 2022 were retrieved.Their medical records were consulted,and clinical data of the children were recorded and summarized,including gender,age,disease site,etc.Existing wax blocks of skin lesion specimens of children and pathological films were retrieved for further study and relevant histology,including hematoxylin-eosin,Alcian blue,elastic fiber(Victoria blue-Lichon red method),and antacid staining.Finally,the children’s clinical manifestations,histopathological results,and special staining characteristics were analyzed.RESULTS The clinical manifestations of granuloma annulare in children were diverse:11 cases presented with a single lesion,25 with multiple lesions,and 3 with generalized lesions.The pathological typing comprised histiocytic infiltration,palisading granuloma,epithelioid nodular,and mixed types in 4,11,9,and 15 cases,respectively.Thirty-nine cases were negative for antacid staining.The positive rate of Alcian blue staining was 92.3%,and that of elastic fiber staining was 100%.The degree of elastic fiber dissolution and granuloma annulare histopathological typing were positively correlated(r=0.432,P<0.05).No correlation was found between clinical presentation and histopathological typing of the granuloma annulare in children.In the pathological diagnosis of granuloma annulare,the positive elastic fiber staining rate was higher than that of Alcian blue staining.A correlation was found between elastic fiber dissolution degree and histopathological staging.However,the differences in pathological staging may have been related to the pathological manifestation of granuloma annulare at different periods.CONCLUSION Elastic fiber degradation may be a critical step in the pathogenesis of pediatric granuloma annulare.This is also one of the first studies focused on granuloma annulare in children.
文摘BACKGROUND Granuloma annulare(GA)has diverse clinical manifestations including papules,plaques,and nodules on the extremities that are skin-colored,pink,or purple.Approximately 15%of all GA cases are considered generalized GA.CASE SUMMARY Herein,we describe the case of a pediatric patient who initially presented with papules and later developed generalized atrophic macules.Upon examination,two different morphologic lesions were histopathologically confirmed:Epithelioid nodular GA and scattered histiocytic infiltrative GA.This patient exhibited rare clinical manifestations that differed throughout the course of the disease.The varying histopathological types and clinical manifestations of GA may be linked to the different stages of the disease.CONCLUSION This rare case demonstrates the different histopathological features of different stages and clinical manifestations of granuloma annulare in an infant.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金supported by the China National 863 Program (Grant No.2006AA09A106)the Doctoral Program of Higher Education of China (Grant No.20060425502)+1 种基金the National Natural Science Foundation of China (Grant No.50874116)Shandong Province Natural Science Foundation(Grant No.Z2007A01)
文摘It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
基金supported by National High Technical Research and Development Program of China (No.2009AA03Z534)National Basic Research Program of China (No.2006CB605203)
文摘A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.
基金Supported by National Natural Science Foundation of China(Grant No.51779107)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20170548)+1 种基金Postdoctoral Science Foundation of China(Grant No.2017M611724)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.
文摘The cylindrical worm processed by annular grinding wheel envelope in two degree of freedom motion state is a novel worm. This paper explains the shaping principle of such a worm. To improve meshing quality and the properties of contact and lubrication, the multi objective optimization has been conducted for the first time to the parameters of such a worm pair by the fuzzy optimal method. The results show that, the shape of the contact line is visibly more sloped than before being optimized, lubrication angle is apparently bigger, and the distribution of contact lines is much improved.
基金supported by the National Natural Science Foundation of China under Grant Nos.40631005 and 40620130113CAS International Partnership Project.
文摘The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.
基金The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China(Grant no.51605448)Natural Science Foundation of Shanxi(Grant no.201701D221093)"HIGH-GRADE CNC machine tools and basic manufacturing equipment"Major National Science and technology projects(Grant no.2019ZX04022001-004).
文摘This paper provided an efficient single pass severe plastic deformation(SPD)method,annular channel angular extrusion(ACAE),for fabricating AZ80 magnesium alloy shell part.The effect of ACAE process on the microstructure homogeneity,texture,and mechanical properties of extruded part was experimentally investigated.For comparison,conventional backward extrusion(BE)was also conducted on processing AZ80 part with same specification.The results showed that ACAE process has a better capacity to refine the microstructure and dramatic improve the deformation homogeneity of the extruded part than BE process.Due to two strong shear deformations were implemented,ACAE process could also concurrently modify the basal texture more notably than BE process.In particular,a bimodal texture was found in ACAE extruded part,which was greatly related to the enhanced synergetic action of basal slip and secondary<c+a>slip caused by the effective shear stress.More uniform and superior hardness along the thickness and height of part were achieved via ACAE process.Further surveying of tensile tests also showed that the part fabricated by ACAE process exhibited significantly higher and far more homogeneous tensile properties with an excellent balance of strength and ductility.The remarkable enhanced tensile properties of ACAE extruded part could be primarily attributed to the significant grain refinement,which provided a powerful grain boundary strengthening effect and meaningfully suppressed the development of twin-sized cracks during tensile deformation.It was established that ACAE process seemed to be a very promising single pass SPD method for manufacturing Mg-based alloy shell parts with more homogeneous microstructure and superior performance.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51179134)the National Key Basic Research Program of China(Grant No.2014CB239203)Program for New Century Excellent Talents in University(Grant No.NCET-12-0424)
文摘The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT13026)the National 863 Program for Nuclear Fuel Cycling and Nuclear Safety Technology Project(No.2009AA050703)
文摘Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydrodynamic characteristics of the extraction systems in ACCs. The phase ratio (R = Vaq/Vorg, A/O) and liquid holdup volume (V) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the V and R (A/O) of a φ20 ACC by using a 30%TBP/kerosene- HNO3 solution system. The results showed that the operational and structural parameters had different effects on the V and R (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid holdup volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.