Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a s...Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a swirled annular combustor equipped with dual-volume dampers are numerically investigated by the Helmholtz method, combined with a measured flame transfer function and the established damper impedance model. Furthermore, the influences of the damper number and circumferential configurations on oscillation attenuations and mode structures are explored. The established dual-volume damper model is well validated by the impedance tube tests. Numerical results indicate velocity fluctuation levels of the longitudinal and azimuthal modes decline after installing Helmholtz dampers, whereas those of the azimuthal modes further decrease by around 16% after using four retuned dual-volume dampers. The eigenfrequencies of the first longitudinal and azimuthal modes decrease and increase after installing dampers, respectively. After installing dual-volume dampers, the difference between the pressure fluctuation in the plenum and combustion chamber is reduced, and pressure waveforms of the azimuthal modes along the circumferential direction shifts. The pressure distribution of azimuthal modes becomes more uniform after using more dual-volume dampers. The specific absorption frequency band for azimuthal modes introduced by the dual-volume damper may lead to decreased oscillations and mode evolutions. The maximal absorbing ability can be approached by installing dampers with the same angle between adjacent dampers. When dampers are unevenly distributed, the symmetry between two azimuthal modes is broken and standing modes will emerge.展开更多
ZK2000 is a newly developed 2 MW all radial gas turbine with an annular combustor. In this paper, the authors present the atmospheric test results of the combustor on test rig. Evaluation of several RANS turbulence mo...ZK2000 is a newly developed 2 MW all radial gas turbine with an annular combustor. In this paper, the authors present the atmospheric test results of the combustor on test rig. Evaluation of several RANS turbulence models and reaction models were used in order to determine which model was the most appropriate combination for comparison with the test results. FGM with SST were selected because of the better agreement with test results in terms of combustor temperature rise, primary zone temperature, liner metal temperature, and NO_x emission predictions.展开更多
In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temp...In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temperature and pressure fields in the chamber with double swirlers.The mathematical model of the coupling combustion,gas flow,and heat transfer process was established.The influences of the inlet swirling strength,fuel-air ratio and temperature of the premixed gas on the multi-field characteristics and synergy were investigated on the basis of field synergy theory.The results showed that the central recirculation zone induced by the inlet swirling flow grows downstream in the combustion chamber.The velocity and temperature in the outlet section of the chamber tend to be uniform due to the upstream improved synergy.The outer swirl number of the premixed gas flow has a great influence on the comprehensive flow and heat transfer performance of the combustion chamber.The synergy angles change towards benefiting the synergy between velocity and temperature fields with the increasing swirl numbers and inlet gas temperature while the velocity-pressure synergy becomes poor.The increasing fuel-air ratio of premixed gas leads to different trends of the velocity-temperature synergy and velocity-pressure synergy.The comprehensive synergy representing the low-resistance heat transfer performance is evidently dominated mainly by the velocity-temperature synergy.展开更多
基金funded by the National Science and Technology Major Project(J2019-Ⅲ-0020-0064)。
文摘Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a swirled annular combustor equipped with dual-volume dampers are numerically investigated by the Helmholtz method, combined with a measured flame transfer function and the established damper impedance model. Furthermore, the influences of the damper number and circumferential configurations on oscillation attenuations and mode structures are explored. The established dual-volume damper model is well validated by the impedance tube tests. Numerical results indicate velocity fluctuation levels of the longitudinal and azimuthal modes decline after installing Helmholtz dampers, whereas those of the azimuthal modes further decrease by around 16% after using four retuned dual-volume dampers. The eigenfrequencies of the first longitudinal and azimuthal modes decrease and increase after installing dampers, respectively. After installing dual-volume dampers, the difference between the pressure fluctuation in the plenum and combustion chamber is reduced, and pressure waveforms of the azimuthal modes along the circumferential direction shifts. The pressure distribution of azimuthal modes becomes more uniform after using more dual-volume dampers. The specific absorption frequency band for azimuthal modes introduced by the dual-volume damper may lead to decreased oscillations and mode evolutions. The maximal absorbing ability can be approached by installing dampers with the same angle between adjacent dampers. When dampers are unevenly distributed, the symmetry between two azimuthal modes is broken and standing modes will emerge.
基金funded by the Key Programs of the Chinese Academy of Sciences (Project No. ZDRW-CN2017-2)National Natural Science Foundation of China No. 51306199
文摘ZK2000 is a newly developed 2 MW all radial gas turbine with an annular combustor. In this paper, the authors present the atmospheric test results of the combustor on test rig. Evaluation of several RANS turbulence models and reaction models were used in order to determine which model was the most appropriate combination for comparison with the test results. FGM with SST were selected because of the better agreement with test results in terms of combustor temperature rise, primary zone temperature, liner metal temperature, and NO_x emission predictions.
基金the National Natural Science Foundation of China(No.51606114)Science and Technology Commission of Shanghai Municipality(Nos.19020500900,16020500700)to this study are acknowledged and highly appreciated.
文摘In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temperature and pressure fields in the chamber with double swirlers.The mathematical model of the coupling combustion,gas flow,and heat transfer process was established.The influences of the inlet swirling strength,fuel-air ratio and temperature of the premixed gas on the multi-field characteristics and synergy were investigated on the basis of field synergy theory.The results showed that the central recirculation zone induced by the inlet swirling flow grows downstream in the combustion chamber.The velocity and temperature in the outlet section of the chamber tend to be uniform due to the upstream improved synergy.The outer swirl number of the premixed gas flow has a great influence on the comprehensive flow and heat transfer performance of the combustion chamber.The synergy angles change towards benefiting the synergy between velocity and temperature fields with the increasing swirl numbers and inlet gas temperature while the velocity-pressure synergy becomes poor.The increasing fuel-air ratio of premixed gas leads to different trends of the velocity-temperature synergy and velocity-pressure synergy.The comprehensive synergy representing the low-resistance heat transfer performance is evidently dominated mainly by the velocity-temperature synergy.