Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.R...Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.展开更多
Anodic electrochemical behavior was studied on graphite anode at 1000 ℃ in cryolite-alumina molten salt by means of cyclic voltammetry. The high current peak in a typical cyclic voltammogram was discussed. It is cons...Anodic electrochemical behavior was studied on graphite anode at 1000 ℃ in cryolite-alumina molten salt by means of cyclic voltammetry. The high current peak in a typical cyclic voltammogram was discussed. It is considered that a type of oxyfluoroaliminate complex anions reacts with carbon to form a high-resistance CF film on the anode surface at a high potential. The passivation potential is 3.28 V in 0.5% alumina-containing electrolyte, and the passivation potential increases with alumina content increasing which indicates that the alumina content determines the anodic process in the cryolite-alumina molten salt system.展开更多
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve...The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.展开更多
The environment benignity and battery cost are major concerns for grid-scale energy storage applications.The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance,low cost and...The environment benignity and battery cost are major concerns for grid-scale energy storage applications.The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance,low cost and non-toxicity for Fe resources.However,serious passivation reactions on Fe anodes and poor long-term cyclability for matched cathodes still stand in the way for their practical usage.To settle above constraints,we herein use NH_(4)Cl as the electrolyte regulator to elevate the reaction kinetics of passivated Fe anodes,and also propose a special cathode-free design to prolong the cells lifetime over 1,000 cycles.The added NH_(4)Cl can erode/break inert passivation layers and strengthen the ion conductivity of electrolytes,facilitating the reversible Fe plating/stripping and Fe^(2+)shuttling.The highly puffed nano carbon foams function as current collectors and actives anchoring hosts,enabling expedite Fe^(2+)adsorption/desorption,FeII/FeIII redox conversions and FeIII deposition.The configured rocking-chair Fe-ion cells have good environmental benignity and decent energy-storage behaviors,including high reactivity/reversibility,outstanding cyclic stability and far enhanced operation longevity.Such economical,long-cyclic and green cathode-free Fe-ion batteries may hold great potential in near-future energy-storage power stations.展开更多
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by the Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.
基金Projects (50804010, 51074046) supported by the National Natural Science Foundation of China
文摘Anodic electrochemical behavior was studied on graphite anode at 1000 ℃ in cryolite-alumina molten salt by means of cyclic voltammetry. The high current peak in a typical cyclic voltammogram was discussed. It is considered that a type of oxyfluoroaliminate complex anions reacts with carbon to form a high-resistance CF film on the anode surface at a high potential. The passivation potential is 3.28 V in 0.5% alumina-containing electrolyte, and the passivation potential increases with alumina content increasing which indicates that the alumina content determines the anodic process in the cryolite-alumina molten salt system.
基金National Defense Foundation of China (No.51318030401).
文摘The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.
基金This work is financially supported by the National Natural Science Foundation of China(No.51802269)Fundamental Research Funds for the Central Universities(Nos.XDJK2020C057 and SYJ2021011)Venture&Innovation Support Program for Chongqing overseas returnees(cx2018027).
文摘The environment benignity and battery cost are major concerns for grid-scale energy storage applications.The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance,low cost and non-toxicity for Fe resources.However,serious passivation reactions on Fe anodes and poor long-term cyclability for matched cathodes still stand in the way for their practical usage.To settle above constraints,we herein use NH_(4)Cl as the electrolyte regulator to elevate the reaction kinetics of passivated Fe anodes,and also propose a special cathode-free design to prolong the cells lifetime over 1,000 cycles.The added NH_(4)Cl can erode/break inert passivation layers and strengthen the ion conductivity of electrolytes,facilitating the reversible Fe plating/stripping and Fe^(2+)shuttling.The highly puffed nano carbon foams function as current collectors and actives anchoring hosts,enabling expedite Fe^(2+)adsorption/desorption,FeII/FeIII redox conversions and FeIII deposition.The configured rocking-chair Fe-ion cells have good environmental benignity and decent energy-storage behaviors,including high reactivity/reversibility,outstanding cyclic stability and far enhanced operation longevity.Such economical,long-cyclic and green cathode-free Fe-ion batteries may hold great potential in near-future energy-storage power stations.