期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
1
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:6
2
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
3
作者 范影强 陈秀娟 XU Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期490-495,共6页
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv... The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved. 展开更多
关键词 ZNO carbon coating anode material lithium-ion batteries
下载PDF
Recent progress of advanced anode materials of lithium-ion batteries 被引量:10
4
作者 Hui Cheng Joseph G.Shapter +1 位作者 Yongying Li Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期451-468,I0011,共19页
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ... The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered. 展开更多
关键词 anode materials LIBS NANOmaterials Metal organic frameworks
下载PDF
CoFe_2O_4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries 被引量:5
5
作者 Yinglin Xiao Xiaomin Li +5 位作者 Jiantao Zai Kaixue Wang Yong Gong Bo Li Qianyan Han Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期307-315,共9页
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob... Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes. 展开更多
关键词 Cobalt ferrite GRAPHENE anode materials Lithium ion battery
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:2
6
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries anode materials Carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
Internal failure of anode materials for lithium batteriesd——A critical review 被引量:5
7
作者 Xiangqi Meng Yaolin Xu +5 位作者 Hongbin Cao Xiao Lin Pengge Ning Yi Zhang Yaiza Gonzalez Garcia Zhi Sun 《Green Energy & Environment》 CSCD 2020年第1期22-36,共15页
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna... Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries. 展开更多
关键词 Lithium battery anode materials Internal failure
下载PDF
Rational Design of WO_3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance 被引量:2
8
作者 Yang Liu Yang Jiao +3 位作者 Haiyue Zhou Xiang Yu Fengyu Qu Xiang Wu 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期12-16,共5页
A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires ... A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 m Ah g-1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 m Ah g-1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and557 m Ah g-1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances. 展开更多
关键词 WO3 nanostructures anode materials Li-ion batteries
下载PDF
Anode materials for potassium-ion batteries: Current status and prospects 被引量:3
9
作者 Mo Sha Long Liu +1 位作者 Huaping Zhao Yong Lei 《Carbon Energy》 CAS 2020年第3期350-369,共20页
Potassium-ion batteries(KIBs)as one of the most promising alternatives to lithium-ion batteries have been highly valued in recent years.However,progress in KIBs is largely restricted by the sluggish development in ano... Potassium-ion batteries(KIBs)as one of the most promising alternatives to lithium-ion batteries have been highly valued in recent years.However,progress in KIBs is largely restricted by the sluggish development in anode materials.Therefore,it is imperative to systematically outline and evaluate the recent research advances in the field of anode materials for KIBs toward promoting the development of high-performance anode materials for KIBs.In this review,the recent achievements in anode materials for KIBs are summarized.The electrochemical properties(ie.charge storage mechanism,capacity,rate performance,and cycling stability)of these reported anode materials,as well as their advantages/disadvantages,are discerned and analyzed,enabling high-performance KIBs to meet the requirements for practical applications.Finally,technological developments,scientific challenges,and future research opportunities of anode materials for KIBs are briefly reviewed. 展开更多
关键词 anode materials capacity and stability electrochemical properties energy density potassium-ion batteries
下载PDF
Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries 被引量:1
10
作者 Jun Yang Jiahui Xian +2 位作者 Qinglin Liu Yamei Sun Guangqin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期524-530,I0015,共8页
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material... Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries. 展开更多
关键词 Bi nanoparticles Carbon film anode materials Lithium-ion batteries In situ XRD
下载PDF
Nitrogen-Doped TiO_2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries 被引量:1
11
作者 Su Nie Li Liu +6 位作者 Junfang Liu Jianjun Xie Yue Zhang Jing Xia Hanxiao Yan Yiting Yuan Xianyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期255-267,共13页
Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N... Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries. 展开更多
关键词 Nanofibers anode materials Sodium-ion batteries PSEUDOCAPACITANCE NITROGEN-DOPING
下载PDF
Recent Research Progress of Anode Materials for Potassium-ion Batteries 被引量:4
12
作者 Chenglin Zhang Huaping Zhao Yong Lei 《Energy & Environmental Materials》 2020年第2期105-120,共16页
The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries(LIBs).Owing to the abundance... The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries(LIBs).Owing to the abundance of potassium(K) resources and the similar electrochemical performance to that of LIBs,potassium-ion batteries(PIBs) have been attracted considerable interest in recent years,and significant progress has been achieved concerning the discovery of high-performance electrode materials for PIBs.This review especially summarizes the latest research progress regarding anode materials for PIBs,including carbon materials,organic materials,alloys,metal-based compounds,and other new types of compounds.The reversible K-ion storage principle and the electrochemical performance(i.e.,capacity,potential,rate capability,and cyclability) of these developed anode materials are summarized.Furthermore,the challenges and the corresponding effective strategies to enhance the battery performance of the anode materials are highlighted.Finally,prospects of the future development of high-performance anode materials for PIBs are discussed. 展开更多
关键词 anode materials effective strategies potassium-ion batteries
下载PDF
A review on current anode materials for rechargeable Mg batteries 被引量:1
13
作者 Dajian Li Yuan Yuan +2 位作者 Jiawei Liu Maximilian Fichtner Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期963-979,共17页
There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capac... There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Rechargeable Mg batteries anode materials
下载PDF
Template-Free Synthesis of Sb_2S_3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries 被引量:4
14
作者 Jianjun Xie Li Liu +5 位作者 Jing Xia Yue Zhang Min Li Yan Ouyang Su Nie Xianyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期105-116,共12页
Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated ... Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion. 展开更多
关键词 Sb2S3 Hollow microspheres anode material Lithium-ion batteries Sodium-storage property
下载PDF
Yolk-shell FeSe_(2)@CoSe_(2)/FeSe_(2) heterojunction as anode materials for sodium-ion batteries with high rate capability and stability
15
作者 Liuyang Zhang Bicheng Zhu +4 位作者 Difa Xu Zibao Qian Ping Xie Tao Liu Jiaguo Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期185-195,共11页
Sodium-ion batteries are promising candidates for large-scale grid storage systems and other applications.Their foremost advantage derives from superior environmental credentials,enhanced safety as well as lower raw m... Sodium-ion batteries are promising candidates for large-scale grid storage systems and other applications.Their foremost advantage derives from superior environmental credentials,enhanced safety as well as lower raw material costs than lithium-ion batteries.It is still challenging to explore desirable anode material.In this study,FeSe_(2)@CoSe_(2)/FeSe_(2),with a yolk-shell structure was prepared by ion exchange and selenisation.The FeSe_(2)@CoSe_(2)/FeSe_(2)prepared as anode material for sodiumion batteries exhibits excellent rate capability due to the synergistic effect of bimetallic selenides and the interfacial effect of the heterostructure.Moreover,it delivers high performance(510 mAh g^(-1)at 0.2 A g^(-1)),superior rate capa-bility(90%retention at 5 A g^(-1)),and good long-time cycling stability(78%capacity retention after 1800 cycles at a high current density of 2 A g^(-1)).The optimized sodiumion full cell with FeSe_(2)@CoSe_(2)/FeSe_(2)as the anode and Na 3 V 2(PO 4)3 as the cathode still demonstrates excellent performance.Namely,a ca-pacity of 272 mAh g^(-1)(at 1 A g^(-1))within the operating voltage from 1 to 3.8 V can be obtained.This work illustrates the potential of bimetallic selenides with heterostructures for performance enhancement of sodium-ion batteries. 展开更多
关键词 Cobalt-iron selenide HETEROJUNCTIONS Sodium storage anode material Full battery
原文传递
Auxiliary ball milling to prepare WS_(2)/graphene nanosheets composite for lithium-ion battery anode materials
16
作者 Yong-Lin Wu Jia-Bin Hong +3 位作者 Wei-Xu Zhong Chun-Xiang Wang Zhi-Feng Li Sydorov Dmytro 《Tungsten》 EI CSCD 2024年第1期124-133,共10页
A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes ... A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes the van der Waals interactions between the interlayer of graphite and WS_(2).Through high-temperature calcination,GNSs and WS_(2) nanosheets can form tight interface contact.The produced WS_(2)/GNSs composites can be used as anode materials for lithium-ion batteries,while maintaining a high reversible specific capacity of 705 mAh·g^(-1)with the capacity retention of 95%at a current density of 250 mA·g^(-1)after 200 cycles,mainly because WS_(2)/GNSs composites have a higher Li^(+)diffusion coefficient of 2.2×10^(-9)cm^(2)·s^(-1)and a higher specific surface area of 70.10 m^(2)·g^(-1).As a result,the xylitol-assisted ball milling method designed in this work is suitable for extended preparation of peeling of two-dimensional layer materials into nanosheets. 展开更多
关键词 Lithium-ion battery anode material WS_(2) Graphene nanosheets Auxiliary ball milling
原文传递
Chalcogenides metal-based heterostructure anode materials toward Na^(+)-storage application 被引量:1
17
作者 Yue Miao Ying Xiao +1 位作者 Shilin Hu Shimou Chen 《Nano Research》 SCIE EI CSCD 2023年第2期2347-2365,共19页
Sodium-ion batteries(SIBs)are promising candidates for future large-scale energy storage systems due to their low cost and high safety.However,the sluggish kinetics caused by the large radius of Na+impedes the practic... Sodium-ion batteries(SIBs)are promising candidates for future large-scale energy storage systems due to their low cost and high safety.However,the sluggish kinetics caused by the large radius of Na+impedes the practical application of SIBs.Heterostructure engineering has emerged as an attractive strategy to alleviate this critical issue due to its intriguing contributions to accelerating electrons/ions transfer kinetics,improving structural stability,and enhancing Na^(+)adsorption ability.From this perspective,in this review,we introduce the vital role of heterostructure on the performance of SIBs firstly.The commonly used approaches for synthesizing chalcogenides metal-based heterostructure anodes are then presented.Subsequently,we discuss the recent progress of various chalcogenides metal-based anodes in detail.Finally,we provide a concluding discussion on the current challenges and perspectives of future development of the heterostructure anode materials for high-performance SIBs. 展开更多
关键词 HETEROSTRUCTURE energy storage anode materials sodium-ion batteries
原文传递
Exploring the structural properties of cathode and anode materials in Li-ion battery via neutron diffraction technique 被引量:1
18
作者 Yuxi Luo Xiaoyu Gao +7 位作者 Mingjie Dong Tao Zeng Ziwei Chen Maolin Yang Zhongyuan Huang Rui Wang Feng Pan Yinguo Xiao 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第5期44-55,共12页
As a unique microprobe for structure and dynamics of materials,neutron possesses superior ability in penetration as well as sensitivity for light and magnetic elements in comparison with X-ray and electron.As for the ... As a unique microprobe for structure and dynamics of materials,neutron possesses superior ability in penetration as well as sensitivity for light and magnetic elements in comparison with X-ray and electron.As for the research and development of lithium-ion batteries(LIBs),neutron diffraction techniques play an indispensable role in exploring the structural properties of various electrode materials,especially the detailed structural evolution of cathode and anode materials during electrochemical cycling.Moreover,based on thorough analysis of neutron diffraction results,an in-depth and systematic understanding of some fundamental mechanisms,such as the formation mechanism of defects and migration mechanism of lithium ions,could also be established,which is essential for the development of high-performance electrode materials for the next-generation LIBs.Nevertheless,that technique would not seem to be widely applied yet in comparison with the application of X-ray diffraction and more attention should be paid.To demonstrate the advantages of neutron diffraction technique in research of LIBs materials,this work systematically summarizes representative neutron diffraction studies on exploring structural details hidden in electrode materials and on probing structural evolution of electrode materials during charge/discharge processes.Prospects for further applications of neutron diffraction techniques in research of LIBs are also put forward. 展开更多
关键词 Neutron diffraction Lithium-ion battery Cathode and anode materials In operando characterization
原文传递
SnTe nanoparticles physicochemically encapsulated by double carbon as conversion-alloying anode materials for superior potassium-ion batteries
19
作者 Ting Li Yikun Wang +5 位作者 Qianwen Zhou Lingling Yuan Shuangyan Qiao Meng Ma Zhengqing Liu Shaokun Chong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期86-95,共10页
Telluride tin(SnTe)is a promising conversion-alloying anode for potassium-ion batteries(PIBs)due to its high theoretical specific capacity induced by multi-electron transport reaction and low operating voltage,whereas... Telluride tin(SnTe)is a promising conversion-alloying anode for potassium-ion batteries(PIBs)due to its high theoretical specific capacity induced by multi-electron transport reaction and low operating voltage,whereas huge volume expansion and poor kinetics behavior become key scientific bottleneck limiting the battery performances.Herein,SnTe nanoparticles physicochemically wrapped by graphene and nitrogen-doped carbon(SnTe@rGO@NC)are proposed as anode materials for PIBs.The pre-electrostatic interaction urges the formation of Sn-C and Te-C chemical bonds between SnTe and double carbon to strengthen the interfacial stability and electron transfer,and the conductive architecture with hierarchical encapsulation effect is beneficial to maintaining the electrode integrity and electrochemical dynamics.It is demon-strated from first principles calculations and experimental results that SnTe@rGO@NC contributes fast electron transmission,strong K-ion adsorption,and superior K-ion diffusion capability.Ex-situ characteri-zations uncover that SnTe undergoes conversion-alloying dual-mechanism with the products of K_(2)Te and K_(4)Sn_(23)replied on Sn redox site(23SnTe+50K^(+)+50e^(-)↔K_(4)Sn_(23)+23K_(2)Te).Thus,the SnTe@rGO@NC electrode delivers a high initial charge specific capacity of 243.9 mAh g^(-1)at 50 mA g^(-1),superior rate performance(112.6 mAh g^(-1)at 1.0 A g^(-1)),and outstanding cyclic stability at various current densities. 展开更多
关键词 Potassium-ion batteries anode materials Tin telluride Chemical bonding Conversion-alloying mechanism
原文传递
Particulate modification of lithium-ion battery anode materials and electrolytes
20
作者 Zhiwei Li Ning Fu Zhenglong Yang 《Particuology》 SCIE EI CSCD 2023年第12期129-141,共13页
Lithium-ion batteries(LIBs)are considered a rechargeable and commercial energy storage device for electronic equipment such as smartphone and electric vehicles.Despite the prospective future of LIBs,unsatisfied electr... Lithium-ion batteries(LIBs)are considered a rechargeable and commercial energy storage device for electronic equipment such as smartphone and electric vehicles.Despite the prospective future of LIBs,unsatisfied electrochemical properties like reversible capacity,cycle ability and coulombic efficiency still hinder their development.High volume expansion rate,uncontrolled Li dendrite growth and unsatisfied solid electrolyte interphase also occur when LIBs are applied in long-time usage.Numerous modification methods such as exploring high-capacity anode/cathode materials,constructing artificial solid electrolyte interphase and improved conductive binders can be adopted to enhance the performances.Among them,particulate modification for LIBs anode and electrolytes is receiving tremendous attraction in the recent work.The method is composed of changing the morphology and particle size of the active materials,also introduce nano-size additives to the main structure.This review emphasizes on introducing and discussing the modification in following aspects:particulate modification on carbon group IVA element anodes,introduction of additives like transition metal oxide nanoparticles into anode and electrolyte materials,dissipate the influence of Li dendrite growth and ameliorate the performances of solid electrolyte interface.This review hopes to be denoted for the future development of LIBs with the comprehensive understanding on the particulate modification. 展开更多
关键词 Particulate modification anode materials ELECTROLYTE Lithium-ion battery Electrochemical performance
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部