Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects o...Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st...The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.展开更多
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_...To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.展开更多
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b...For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.展开更多
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review...This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.展开更多
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin...Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.展开更多
The temperature uniformity and component concentration distributions in solid oxide fuel cells during operating processes can influence the cell electrochemical and thermal characteristics.A three-dimensional thermal-...The temperature uniformity and component concentration distributions in solid oxide fuel cells during operating processes can influence the cell electrochemical and thermal characteristics.A three-dimensional thermal-fluid numerical model including electrochemical reactions and water-gas-shift(WGS)reaction for a single channel solid oxide fuel cell was developed to study the steady-state characteristics,which include distributions of the temperature(T),temperature gradient((35)T/(35)x),and fuel utilization.It was shown that the maximum temperature(Tmax)changed with operating voltage and the maximum temperature gradient(((35)T/(35)x)max)occurred at the inlet of the channel of a solid oxide fuel cell by simulation.Moreover,the natural convection condition had a great influence on T and(35)T/(35)x.The thermal stress generated by temperature differences was the key parameter and increasing the convection heat-transfer coefficient can greatly reduce the thermal stress.In addition,the results also showed that there were lower temperature gradients and lower current density at high working voltage;therefore,choosing the proper operating voltage can obtain better cell performance.展开更多
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ...This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.展开更多
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve...Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process.展开更多
Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface bet...Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability.展开更多
Solid oxide fuel cell(SOFC) technology and its status and problems were briefly described.Several topics for furtherresearch and development were proposed.
The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel ce...The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.展开更多
A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate t...A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.展开更多
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all oth...Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.展开更多
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char...La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.展开更多
Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,th...Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H2,CH4,CO,and CO2,which were then be used as the fuel for solid oxide fuel cell(SOFC).Planar SOFCs were fabricated and adopted.The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I-V polarization and electrochemical impedance spectra characterizations.An excellent cell performance was obtained,for example,the peak power density of the SOFC reached 1391 mW·cm-2 at 750℃when the generated biogas was used as the fuel.Furthermore,the SOFC fuelled by simulated biogas delivered a very stable operation.展开更多
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coa...The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.展开更多
Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800 -850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO...Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800 -850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The thermal expansion coefficient (TEC) decreased with lower Ba^2+ content and higher Ca^2+ content, but the glass transition temperature and crystallization temperature increased greatly with an increase in Ca^2+ content and a decrease in Ba^2+ content, when the other components in the sealant were invariable. The TEC of the sealant with Ba^2+ content of 25.4% was 10.8 × 10^-6 K^- 1(temperature range from 25 to 850℃), and its softening temperature was 950 ℃. The TEC of the sealant accorded well with that of La0.9Sr0.1Ga0.5Mg0.2o3- 6(LSGM) with a mismatch of only 3%. The sealant had superior stability and compatibility with the LSGM electrolyte during the process of operation in SOFC. The weight loss of the sealant with Ba^2+ content of 25.4% was approfimately zero after heat-treated at 800℃ for 500 h in H2 and O2 atmosphere, respectively.展开更多
基金supported by the National Key R&D Program of China(No.2018YFB1502202)the Fundamental Research Funds for the Central Universities(No.FRF-GF-20-09B).
文摘Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB4001400)。
文摘The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.
基金financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.2018ND133J)the National Natural Science Foundation of China(Nos.22309067 and 22101150)the Natural Science Foundation of Jiangsu Province,China(No.BK20190965).
文摘To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.
基金the National Key R&D Program of China(No.2018YFB1502201)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515010551).
文摘For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.
基金the Fundamental Research Grant Scheme (FRGS),grant No.FRGS/1/2021/TK0/UKM/01/5 funded by the Ministry of Higher Education (MOHE)。
文摘This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.
基金financially supported by the National Key R&D Program of China (No. 2018YFB1502203-1)the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120087)the Stable Supporting Fund of Shenzhen, China (No. GXWD20201230155427003-202007 28114835006)
文摘Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.
基金National Natural Science Foundation of China(No.51376018)。
文摘The temperature uniformity and component concentration distributions in solid oxide fuel cells during operating processes can influence the cell electrochemical and thermal characteristics.A three-dimensional thermal-fluid numerical model including electrochemical reactions and water-gas-shift(WGS)reaction for a single channel solid oxide fuel cell was developed to study the steady-state characteristics,which include distributions of the temperature(T),temperature gradient((35)T/(35)x),and fuel utilization.It was shown that the maximum temperature(Tmax)changed with operating voltage and the maximum temperature gradient(((35)T/(35)x)max)occurred at the inlet of the channel of a solid oxide fuel cell by simulation.Moreover,the natural convection condition had a great influence on T and(35)T/(35)x.The thermal stress generated by temperature differences was the key parameter and increasing the convection heat-transfer coefficient can greatly reduce the thermal stress.In addition,the results also showed that there were lower temperature gradients and lower current density at high working voltage;therefore,choosing the proper operating voltage can obtain better cell performance.
文摘This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.
基金by the Project of Strategic Importance Funding Scheme from The Hong Kong China Polytechnic University(No.P0035168)the National Natural Science Foundation of China(No.51806241).
文摘Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT)(Nos. 2022R1A2C3012372 and 2022R1A4A1031182)Korea Institute for Advancement of Technology(KIAT)Competency Development Program for Industry Specialists of Korean Ministry of Trade,Industry and Energy Grant funded by the Korea Government(MOTIE)(No. P0008458, The Competency Development Program for Industry Specialist and No. P0017120, HRD program for Foster R&D specialist of parts for ecofriendly vehicle (xEV))
文摘Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability.
文摘Solid oxide fuel cell(SOFC) technology and its status and problems were briefly described.Several topics for furtherresearch and development were proposed.
基金supported by the National Natural Science Foundation of China (51372271,51172275)the National Basic Research Program of China (973 Program,2012CB215402)~~
文摘The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20871110 and No.50730002). The authors express their appreciation to Xin-bo Lii, Qingdao Tianhe Graphite Co. Ltd. for supporting appropriate pore former graphite.
文摘A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.
基金financially supported by the National Natural Science Foundation of China(Grant nos.21376001,21576028 and 21506012)。
文摘Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.
基金Project supported by the National Natural Science Foundation of China (50204007)the Foundation of Yunnan Province (2005PY01-33)
文摘La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.
基金financially supported by the National Natural Science Foundation of China(Grants Nos.51302135 and 51678291)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190965)+1 种基金the Research Project of Nanjing Institute of Technology(Grant No.YKJ201435)the Australian Research Council(ARC)Discovery Early Career Researcher Award DE180100773。
文摘Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H2,CH4,CO,and CO2,which were then be used as the fuel for solid oxide fuel cell(SOFC).Planar SOFCs were fabricated and adopted.The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I-V polarization and electrochemical impedance spectra characterizations.An excellent cell performance was obtained,for example,the peak power density of the SOFC reached 1391 mW·cm-2 at 750℃when the generated biogas was used as the fuel.Furthermore,the SOFC fuelled by simulated biogas delivered a very stable operation.
基金supported by the Thailand Research Fund(TRG 5680051)
文摘The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.
基金Project supported by National Natural Science Foundation of China (90510006)
文摘Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800 -850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The thermal expansion coefficient (TEC) decreased with lower Ba^2+ content and higher Ca^2+ content, but the glass transition temperature and crystallization temperature increased greatly with an increase in Ca^2+ content and a decrease in Ba^2+ content, when the other components in the sealant were invariable. The TEC of the sealant with Ba^2+ content of 25.4% was 10.8 × 10^-6 K^- 1(temperature range from 25 to 850℃), and its softening temperature was 950 ℃. The TEC of the sealant accorded well with that of La0.9Sr0.1Ga0.5Mg0.2o3- 6(LSGM) with a mismatch of only 3%. The sealant had superior stability and compatibility with the LSGM electrolyte during the process of operation in SOFC. The weight loss of the sealant with Ba^2+ content of 25.4% was approfimately zero after heat-treated at 800℃ for 500 h in H2 and O2 atmosphere, respectively.