期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Anomaly-Based Intrusion DetectionModel Using Deep Learning for IoT Networks
1
作者 Muaadh A.Alsoufi Maheyzah Md Siraj +4 位作者 Fuad A.Ghaleb Muna Al-Razgan Mahfoudh Saeed Al-Asaly Taha Alfakih Faisal Saeed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期823-845,共23页
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int... The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better. 展开更多
关键词 IOT anomaly intrusion detection deep learning sparse autoencoder convolutional neural network
下载PDF
Intrusion detection based on rough set and artificial immune
2
作者 张玲 Sun Haiyan +2 位作者 Cui Jiantao Yang Hua Huang Yan 《High Technology Letters》 EI CAS 2016年第4期368-375,共8页
In order to increase intrusion detection rate and decrease false positive detection rate,a novel intrusion detection algorithm based on rough set and artificial immune( RSAI-IDA) is proposed.Using artificial immune in... In order to increase intrusion detection rate and decrease false positive detection rate,a novel intrusion detection algorithm based on rough set and artificial immune( RSAI-IDA) is proposed.Using artificial immune in intrusion detection,anomaly actions are detected adaptively,and with rough set,effective antibodies can be obtained. A scheme,in which antibodies are partly generated randomly and others are from the artificial immune algorithm,is applied to ensure the antibodies diversity. Finally,simulations of RSAI-IDA and comparisons with other algorithms are given. The experimental results illustrate that the novel algorithm achieves more effective performances on anomaly intrusion detection,where the algorithm's time complexity decreases,the true positive detection rate increases,and the false positive detection rate is decreased. 展开更多
关键词 rough set artificial immune anomaly intrusion detection rough set and artificial immune(RSAI-IDA)
下载PDF
An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications 被引量:1
3
作者 Ghalib H.Alshammri Amani K.Samha +2 位作者 Ezz El-Din Hemdan Mohammed Amoon Walid El-Shafai 《Computers, Materials & Continua》 SCIE EI 2022年第8期3529-3548,共20页
Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,w... Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset. 展开更多
关键词 Deep neural network DL WEKA network traffic intrusion and anomaly detection SDN clustering and classification KDD dataset
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部