The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface tempera...The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.展开更多
In late December of 1991, observation of three component geomagnetic short period variations was carried out in Chengmai county of Hainan province, along a short measurement profile with small spatial intervals of d...In late December of 1991, observation of three component geomagnetic short period variations was carried out in Chengmai county of Hainan province, along a short measurement profile with small spatial intervals of detection points. Within the period range of 20 s to 500 s, we have discovered that the vertical variations are basically correlated with the horizontal variations in north direction in all measurement points, the real parts of complex transfer functions demonstrate that an asymmetric spatial variation of short wavelength superimposed on regional monotonic tendencious spatial variation. Inversion of the observed data along the small profile was carried out by using the invention method of generalized inverse matrix of finite element forward calculation for the electromagnetic induction of the 2 D conductivity model to investigate the conductivity structure of the profile. We conclude that the anomaly of geomagnetic short periodic variation in the small area originated from the Wangwu Wenjiao fault in the northern part of Hainan island .展开更多
Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and al...Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and also calculated the annual variation of brightness temperature of the hot belt along Honghe fault to explore the formation cause of the high temperature belt and its relation to the earthquakes. The results show that the high temperature belt along Honghe fault is caused by geographic environment factors, such as water system and terrain. But the annual average brightness temperature of the belt in earthquake year of 2003 is clearly higher than that in no earthquake years of 1999 and 2004, this maybe indicates that the thermal activities of Honghe fault increase in earthquake years, and can cause the annual variation anomaly of brightness temperature. We can detect and monitor this thermal activities of Honghe fault before earthquake by analyzing and comparing the relative changes of thermal infrared brightness temperature of the hot belt in different years.展开更多
By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and...By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and wet-seasonal precipitation over the East-China Changjiang-Huaihe reaches and the North-China plain.The SST anomalies are divided into two types,one being“colder in the south and warmer in the north”and the other just opposite,depending on season.Results show that the occurrence of the anomalies is followed by considerable changes in the position of the subtropical high happening for 3-5 months to come.For instance,the spring“colder in the south and warmer in the north”anomalous type (i.e.,colder for 20—35°N,and warmer north of 35°N)leads to the intensification of the summer subtropical high,with the ridge line moved slightly northward,resulting in drought over Changjiang reaches for July-August and in excessive rainfall in the North-China plain,and vice versa.展开更多
基金Sponsored jointly by the " National Key Developing Program for Basic Sciences" !(G 1998040900) Part I and the Key Program of N
文摘The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.
文摘In late December of 1991, observation of three component geomagnetic short period variations was carried out in Chengmai county of Hainan province, along a short measurement profile with small spatial intervals of detection points. Within the period range of 20 s to 500 s, we have discovered that the vertical variations are basically correlated with the horizontal variations in north direction in all measurement points, the real parts of complex transfer functions demonstrate that an asymmetric spatial variation of short wavelength superimposed on regional monotonic tendencious spatial variation. Inversion of the observed data along the small profile was carried out by using the invention method of generalized inverse matrix of finite element forward calculation for the electromagnetic induction of the 2 D conductivity model to investigate the conductivity structure of the profile. We conclude that the anomaly of geomagnetic short periodic variation in the small area originated from the Wangwu Wenjiao fault in the northern part of Hainan island .
基金National Natural Science Foundation of China (90202018).
文摘Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and also calculated the annual variation of brightness temperature of the hot belt along Honghe fault to explore the formation cause of the high temperature belt and its relation to the earthquakes. The results show that the high temperature belt along Honghe fault is caused by geographic environment factors, such as water system and terrain. But the annual average brightness temperature of the belt in earthquake year of 2003 is clearly higher than that in no earthquake years of 1999 and 2004, this maybe indicates that the thermal activities of Honghe fault increase in earthquake years, and can cause the annual variation anomaly of brightness temperature. We can detect and monitor this thermal activities of Honghe fault before earthquake by analyzing and comparing the relative changes of thermal infrared brightness temperature of the hot belt in different years.
文摘By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and wet-seasonal precipitation over the East-China Changjiang-Huaihe reaches and the North-China plain.The SST anomalies are divided into two types,one being“colder in the south and warmer in the north”and the other just opposite,depending on season.Results show that the occurrence of the anomalies is followed by considerable changes in the position of the subtropical high happening for 3-5 months to come.For instance,the spring“colder in the south and warmer in the north”anomalous type (i.e.,colder for 20—35°N,and warmer north of 35°N)leads to the intensification of the summer subtropical high,with the ridge line moved slightly northward,resulting in drought over Changjiang reaches for July-August and in excessive rainfall in the North-China plain,and vice versa.