This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul...This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.展开更多
This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a p...This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored...[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation pe...Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.展开更多
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for...Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.展开更多
Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems.One of the challenges in software security testin...Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems.One of the challenges in software security testing is test case prioritization,which aims to reduce redundancy in fault occurrences when executing test suites.By effectively applying test case prioritization,both the time and cost required for developing secure software can be reduced.This paper proposes a test case prioritization technique based on the Ant Colony Optimization(ACO)algorithm,a metaheuristic approach.The performance of the ACO-based technique is evaluated using the Average Percentage of Fault Detection(APFD)metric,comparing it with traditional techniques.It has been applied to a Mobile Payment Wallet application to validate the proposed approach.The results demonstrate that the proposed technique outperforms the traditional techniques in terms of the APFD metric.The ACO-based technique achieves an APFD of approximately 76%,two percent higher than the second-best optimal ordering technique.These findings suggest that metaheuristic-based prioritization techniques can effectively identify the best test cases,saving time and improving software security overall.展开更多
A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS sea...A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.展开更多
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith...This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A mu...In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.展开更多
How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of ex...How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.展开更多
Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that ex...Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.展开更多
Motivated by industrial applications we study a single-machine scheduling problem in which all the jobs are mutu- ally independent and available at time zero.The machine processes the jobs sequentially and it is not i...Motivated by industrial applications we study a single-machine scheduling problem in which all the jobs are mutu- ally independent and available at time zero.The machine processes the jobs sequentially and it is not idle if there is any job to be pro- cessed.The operation of each job cannot be interrupted.The machine cannot process more than one job at a time.A setup time is needed if the machine switches from one type of job to another.The objective is to find an optimal schedule with the minimal total jobs’completion time.While the sum of jobs’processing time is always a constant,the objective is to minimize the sum of setup times.Ant colony optimization(ACO)is a meta-heuristic that has recently been applied to scheduling problem.In this paper we propose an improved ACO-Branching Ant Colony with Dynamic Perturbation(DPBAC)algorithm for the single-machine schedul- ing problem.DPBAC improves traditional ACO in following aspects:introducing Branching Method to choose starting points;im- proving state transition rules;introducing Mutation Method to shorten tours;improving pheromone updating rules and introduc- ing Conditional Dynamic Perturbation Strategy.Computational results show that DPBAC algorithm is superior to the traditional ACO algorithm.展开更多
Although ant colony algorithm for the heuristic solution of hard combinational optimization problems enjoy a rapidly growing popularity, but little is known about its convergence properties. Based on the introduction ...Although ant colony algorithm for the heuristic solution of hard combinational optimization problems enjoy a rapidly growing popularity, but little is known about its convergence properties. Based on the introduction of the basic principle and mathematical model, a novel approach to the convergence proof that applies directly to the ant colony algorithm is proposed in this paper. Then, a MATLAB GUI- based ant colony algorithm simulation platform is developed, and the interface of this simulation platform is very friendly, easy to use and to modify.展开更多
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ...In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.展开更多
文摘This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.
文摘This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
基金Supported by the National Natural Science Foundation of China(31101085)the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094)the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
文摘[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
基金This research was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3305303in part by the National Natural Science Foundations of China(NSFC)under Grant 62106055+1 种基金in part by the Guangdong Natural Science Foundation under Grant 2022A1515011825in part by the Guangzhou Science and Technology Planning Project under Grants 2023A04J0388 and 2023A03J0662.
文摘Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.
基金the Science and Technology Cooperation Research and Development Project of Sichuan Provincial Academy and University(Grant No.2019YFSY0024)the Key Research and Development Program in Sichuan Province of China(Grant No.2019YFG0050)the Natural Science Foundation of Guangxi Province of China(Grant No.AD19245021).
文摘Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.
基金Deanship of Scientific Research at King Khalid University for funding this work through Large Group Research Project under Grant Number RGP2/249/44.
文摘Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems.One of the challenges in software security testing is test case prioritization,which aims to reduce redundancy in fault occurrences when executing test suites.By effectively applying test case prioritization,both the time and cost required for developing secure software can be reduced.This paper proposes a test case prioritization technique based on the Ant Colony Optimization(ACO)algorithm,a metaheuristic approach.The performance of the ACO-based technique is evaluated using the Average Percentage of Fault Detection(APFD)metric,comparing it with traditional techniques.It has been applied to a Mobile Payment Wallet application to validate the proposed approach.The results demonstrate that the proposed technique outperforms the traditional techniques in terms of the APFD metric.The ACO-based technique achieves an APFD of approximately 76%,two percent higher than the second-best optimal ordering technique.These findings suggest that metaheuristic-based prioritization techniques can effectively identify the best test cases,saving time and improving software security overall.
基金National Natural Science Foundation of China(No.62241503)Natural Science Foundation of Shanghai,China(No.22ZR1401400)。
文摘A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
文摘This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
基金supported by the National Natural Science Foundations of China(No.11772185)Fundamental Research Funds for the Central Universities(No.3072022JC0202)。
文摘In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.
基金National High Technology Research and Development Program of China(No.2007AA120305)National ScienceFoundation of China(No.40771145)+2 种基金Special Project of Ministry of Science and Technology of China(No.GYHY20070628)Subtopics of Ministry of Land and Resources Project of China(No.KD081902-03)Scientific Research and Innovation Project of Graduate School of Shanghai University,China(No.SHUCX101033)
文摘How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.
基金the National Natural Science Foundation of China (No.60603088)
文摘Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.
文摘Motivated by industrial applications we study a single-machine scheduling problem in which all the jobs are mutu- ally independent and available at time zero.The machine processes the jobs sequentially and it is not idle if there is any job to be pro- cessed.The operation of each job cannot be interrupted.The machine cannot process more than one job at a time.A setup time is needed if the machine switches from one type of job to another.The objective is to find an optimal schedule with the minimal total jobs’completion time.While the sum of jobs’processing time is always a constant,the objective is to minimize the sum of setup times.Ant colony optimization(ACO)is a meta-heuristic that has recently been applied to scheduling problem.In this paper we propose an improved ACO-Branching Ant Colony with Dynamic Perturbation(DPBAC)algorithm for the single-machine schedul- ing problem.DPBAC improves traditional ACO in following aspects:introducing Branching Method to choose starting points;im- proving state transition rules;introducing Mutation Method to shorten tours;improving pheromone updating rules and introduc- ing Conditional Dynamic Perturbation Strategy.Computational results show that DPBAC algorithm is superior to the traditional ACO algorithm.
文摘Although ant colony algorithm for the heuristic solution of hard combinational optimization problems enjoy a rapidly growing popularity, but little is known about its convergence properties. Based on the introduction of the basic principle and mathematical model, a novel approach to the convergence proof that applies directly to the ant colony algorithm is proposed in this paper. Then, a MATLAB GUI- based ant colony algorithm simulation platform is developed, and the interface of this simulation platform is very friendly, easy to use and to modify.
文摘In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.