The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic mode...Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.展开更多
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph...Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks.展开更多
A new approach to extraction of affine invariant features of contour image and matching strategy is proposed for shape recognition.Firstly,the centroid distance and azimuth angle of each boundary point are computed.Th...A new approach to extraction of affine invariant features of contour image and matching strategy is proposed for shape recognition.Firstly,the centroid distance and azimuth angle of each boundary point are computed.Then,with a prior-defined angle interval,all the points in the neighbor region of the sample point are considered to calculate the average distance for eliminating noise.After that,the centroid distance ratios(CDRs) of any two opposite contour points to the barycenter are achieved as the representation of the shape,which will be invariant to affine transformation.Since the angles of contour points will change non-linearly among affine related images,the CDRs should be resampled and combined sequentially to build one-by-one matching pairs of the corresponding points.The core issue is how to determine the angle positions for sampling,which can be regarded as an optimization problem of path planning.An ant colony optimization(ACO)-based path planning model with some constraints is presented to address this problem.Finally,the Euclidean distance is adopted to evaluate the similarity of shape features in different images.The experimental results demonstrate the efficiency of the proposed method in shape recognition with translation,scaling,rotation and distortion.展开更多
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa...In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.展开更多
Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usua...Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.展开更多
Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain...Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain path in wireless sensor network. In order to solve these optimization problems, inter cluster Ant Colony Optimization Algorithm (ACO) is used with mobile sink (MS) and rendezvous nodes (RN). The proposed algorithm will improve 30% more network lifetime than the existing algorithm and prompts high accurate delivery of packets in highly dense network.展开更多
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant...The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.展开更多
A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In...A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.展开更多
Since the introduction of Ant Colony Optimization (ACO) technique in 1992, the algorithm starts to gain popularity due to its attractive features. However, several shortcomings such as slow convergence and stagnation ...Since the introduction of Ant Colony Optimization (ACO) technique in 1992, the algorithm starts to gain popularity due to its attractive features. However, several shortcomings such as slow convergence and stagnation motivate many researchers to stop further implementation of ACO. Therefore, in order to overcome these drawbacks, ACO is proposed to be combined with Differential Evolution (DE) and cloning process. This paper presents Differential Evolution Immunized Ant Colony Optimization (DEIANT) technique in solving economic load dispatch problem. The combination creates a new algorithm that will be termed as Differential Evolution Immunized Ant Colony Optimization (DEIANT). DEIANT was utilized to optimize economic load dispatch problem. A comparison was made between DEIANT and classical ACO to evaluate the performance of the new algorithm. In realizing the effectiveness of the proposed technique, IEEE 57-Bus Reliable Test System (RTS) has been used as the test specimen. Results obtained from the study revealed that the proposed DEIANT has superior computation time.展开更多
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
基金supported by the Natural Science Foundation of China (Grant no.60604009)Aeronautical Science Foundation of China (Grant no.2006ZC51039,Beijing NOVA Program Foundation of China (Grant no.2007A017)+1 种基金Open Fund of the Provincial Key Laboratory for Information Processing Technology,Suzhou University (Grant no KJS0821)"New Scientific Star in Blue Sky"Talent Program of Beihang University of China
文摘Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.
基金the International Cooperation Project of Ministry of Science and Technology of P. R. China (GrantNo.CB7-2-01)SEC E-Institute: Shanghai High Institutions Grid
文摘Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks.
基金Supported by National Natural Science Foundation of China (60496322), Natural Science Foundation of Beijing (4083034), and Scientific Research Common Program of Beijing Municipal Commission.of Education (KM200610005020)_ _ _
基金supported by the National "111" Project of China(B08036)the Foundation for Science & Technology Research Project of Chongqing (CSTC2010AA5049)the Scientific Research Foundation of State Key Laboratory of Power Transmission Equipment and System Security (2007DA10512709213)
文摘A new approach to extraction of affine invariant features of contour image and matching strategy is proposed for shape recognition.Firstly,the centroid distance and azimuth angle of each boundary point are computed.Then,with a prior-defined angle interval,all the points in the neighbor region of the sample point are considered to calculate the average distance for eliminating noise.After that,the centroid distance ratios(CDRs) of any two opposite contour points to the barycenter are achieved as the representation of the shape,which will be invariant to affine transformation.Since the angles of contour points will change non-linearly among affine related images,the CDRs should be resampled and combined sequentially to build one-by-one matching pairs of the corresponding points.The core issue is how to determine the angle positions for sampling,which can be regarded as an optimization problem of path planning.An ant colony optimization(ACO)-based path planning model with some constraints is presented to address this problem.Finally,the Euclidean distance is adopted to evaluate the similarity of shape features in different images.The experimental results demonstrate the efficiency of the proposed method in shape recognition with translation,scaling,rotation and distortion.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZD15)the Soft Science Research Project of Guangdong Province(2015A070704015)+1 种基金the Guangdong Province Key Laboratory Open Foundation(2011A06090100101B)the Technology Trading System and Science&Technology Service Network Construction Project of Guangdong Province(2014A040402003)
文摘In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.
文摘Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.
文摘Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain path in wireless sensor network. In order to solve these optimization problems, inter cluster Ant Colony Optimization Algorithm (ACO) is used with mobile sink (MS) and rendezvous nodes (RN). The proposed algorithm will improve 30% more network lifetime than the existing algorithm and prompts high accurate delivery of packets in highly dense network.
基金supported in part by the National Research Foundation of Korea (NRF-2021H1D3A2A01082705).
文摘The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.
文摘A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.
文摘Since the introduction of Ant Colony Optimization (ACO) technique in 1992, the algorithm starts to gain popularity due to its attractive features. However, several shortcomings such as slow convergence and stagnation motivate many researchers to stop further implementation of ACO. Therefore, in order to overcome these drawbacks, ACO is proposed to be combined with Differential Evolution (DE) and cloning process. This paper presents Differential Evolution Immunized Ant Colony Optimization (DEIANT) technique in solving economic load dispatch problem. The combination creates a new algorithm that will be termed as Differential Evolution Immunized Ant Colony Optimization (DEIANT). DEIANT was utilized to optimize economic load dispatch problem. A comparison was made between DEIANT and classical ACO to evaluate the performance of the new algorithm. In realizing the effectiveness of the proposed technique, IEEE 57-Bus Reliable Test System (RTS) has been used as the test specimen. Results obtained from the study revealed that the proposed DEIANT has superior computation time.
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.