Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by ...Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used....To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ...This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO.展开更多
To alleviate the scalability problem caused by the increasing Web using and changing users' interests, this paper presents a novel Web Usage Mining algorithm-Incremental Web Usage Mining algorithm based on Active Ant...To alleviate the scalability problem caused by the increasing Web using and changing users' interests, this paper presents a novel Web Usage Mining algorithm-Incremental Web Usage Mining algorithm based on Active Ant Colony Clustering. Firstly, an active movement strategy about direction selection and speed, different with the positive strategy employed by other Ant Colony Clustering algorithms, is proposed to construct an Active Ant Colony Clustering algorithm, which avoid the idle and "flying over the plane" moving phenomenon, effectively improve the quality and speed of clustering on large dataset. Then a mechanism of decomposing clusters based on above methods is introduced to form new clusters when users' interests change. Empirical studies on a real Web dataset show the active ant colony clustering algorithm has better performance than the previous algorithms, and the incremental approach based on the proposed mechanism can efficiently implement incremental Web usage mining.展开更多
Human Immunodeficiency Virus (HIV) is especially difficult to treat due to its rapid mutation rate. There are currently eleven different genomic subtypes of HIV-1, as well as a number of recombinant subtypes. An area ...Human Immunodeficiency Virus (HIV) is especially difficult to treat due to its rapid mutation rate. There are currently eleven different genomic subtypes of HIV-1, as well as a number of recombinant subtypes. An area of study in bioinformatics is the development of algorithms to identify the subtypes of HIV-1 genomes. Ant-based algorithms have the ability to find global solutions in optimizations problems, and are also able to process complex data efficiently. We proposed a new technique named Ant Colony Anchor Algorithm (ACAA), using anchors of training data on a topographic map to categorize HIV-1 sequences based on ant-based clustering. We used three sets of sequences from the POL region of the HIV-1 genome. We categorized these three dataset with the Subtype Analyzer (STAR), a current HIV-1 categorization algorithm, and the ACAA. We found that the ACAA returned higher accuracy values of 83.2%, 67.1%, and 53.5% for our three datasets respectively, than the STAR’s 47.3%, 49.4% and 18%. The results of the ACAA are the average results of 20 runs of the algorithm. We also observed the performance of the algorithm on specific subtypes, and observed that while the STAR and ACAA performed with similar accuracy on several subtypes (A, B, and C in particular), the ACAA had a significant advantage over the STAR in others, especially in categorizing recombinant subtypes.展开更多
An improved heuristic ant-clustering algorithm(HAC)is presented in this paper.A device of ’memory bank’ is proposed,which can bring forth heuristic knowledge guiding ant to move in the bi-dimension grid space.The de...An improved heuristic ant-clustering algorithm(HAC)is presented in this paper.A device of ’memory bank’ is proposed,which can bring forth heuristic knowledge guiding ant to move in the bi-dimension grid space.The device lowers the randomness of ants’ moving and avoids the producing of"un-assigned data object".We have made some experiments on real data sets and synthetic data sets.The results demonstrate that HAC has superiority in misclassification error rate and runtime over the classical algorithm.展开更多
The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working en...The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.展开更多
Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain...Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain path in wireless sensor network. In order to solve these optimization problems, inter cluster Ant Colony Optimization Algorithm (ACO) is used with mobile sink (MS) and rendezvous nodes (RN). The proposed algorithm will improve 30% more network lifetime than the existing algorithm and prompts high accurate delivery of packets in highly dense network.展开更多
Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-com...Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.展开更多
To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of conver...To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm.展开更多
基金Project(41272304)supported by the National Natural Science Foundation of ChinaProject(51074177)jointly supported by the National Natural Science Foundation and Shanghai Baosteel Group Corporation,ChinaProject(CX2012B070)supported by Hunan Provincial Innovation Fund for Postgraduated Students,China
文摘Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Projects(41161020,41261026) supported by the National Natural Science Foundation of ChinaProject(BQD2012013) supported by the Research starting Funds for Imported Talents,Ningxia University,China+1 种基金Project(ZR1209) supported by the Natural Science Funds,Ningxia University,ChinaProject(NGY2013005) supported by the Key Science Project of Colleges and Universities in Ningxia,China
文摘To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
文摘This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2005046)
文摘To alleviate the scalability problem caused by the increasing Web using and changing users' interests, this paper presents a novel Web Usage Mining algorithm-Incremental Web Usage Mining algorithm based on Active Ant Colony Clustering. Firstly, an active movement strategy about direction selection and speed, different with the positive strategy employed by other Ant Colony Clustering algorithms, is proposed to construct an Active Ant Colony Clustering algorithm, which avoid the idle and "flying over the plane" moving phenomenon, effectively improve the quality and speed of clustering on large dataset. Then a mechanism of decomposing clusters based on above methods is introduced to form new clusters when users' interests change. Empirical studies on a real Web dataset show the active ant colony clustering algorithm has better performance than the previous algorithms, and the incremental approach based on the proposed mechanism can efficiently implement incremental Web usage mining.
文摘Human Immunodeficiency Virus (HIV) is especially difficult to treat due to its rapid mutation rate. There are currently eleven different genomic subtypes of HIV-1, as well as a number of recombinant subtypes. An area of study in bioinformatics is the development of algorithms to identify the subtypes of HIV-1 genomes. Ant-based algorithms have the ability to find global solutions in optimizations problems, and are also able to process complex data efficiently. We proposed a new technique named Ant Colony Anchor Algorithm (ACAA), using anchors of training data on a topographic map to categorize HIV-1 sequences based on ant-based clustering. We used three sets of sequences from the POL region of the HIV-1 genome. We categorized these three dataset with the Subtype Analyzer (STAR), a current HIV-1 categorization algorithm, and the ACAA. We found that the ACAA returned higher accuracy values of 83.2%, 67.1%, and 53.5% for our three datasets respectively, than the STAR’s 47.3%, 49.4% and 18%. The results of the ACAA are the average results of 20 runs of the algorithm. We also observed the performance of the algorithm on specific subtypes, and observed that while the STAR and ACAA performed with similar accuracy on several subtypes (A, B, and C in particular), the ACAA had a significant advantage over the STAR in others, especially in categorizing recombinant subtypes.
文摘An improved heuristic ant-clustering algorithm(HAC)is presented in this paper.A device of ’memory bank’ is proposed,which can bring forth heuristic knowledge guiding ant to move in the bi-dimension grid space.The device lowers the randomness of ants’ moving and avoids the producing of"un-assigned data object".We have made some experiments on real data sets and synthetic data sets.The results demonstrate that HAC has superiority in misclassification error rate and runtime over the classical algorithm.
文摘The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.
文摘Energy conservation is becoming the main critical issue in wireless sensor network and also the main research area for most of the researchers. For improving the energy efficiency, sink mobility is used with constrain path in wireless sensor network. In order to solve these optimization problems, inter cluster Ant Colony Optimization Algorithm (ACO) is used with mobile sink (MS) and rendezvous nodes (RN). The proposed algorithm will improve 30% more network lifetime than the existing algorithm and prompts high accurate delivery of packets in highly dense network.
基金Deanship of scientific research for funding and supporting this research through the initiative of DSR Graduate Students Research Support(GSR).
文摘Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm.