Fractal antennas are characterized by space filling and self-similarity properties which results in considerable size reduction and multiband operation as compared to conventional microstrip antenna. This paper outlin...Fractal antennas are characterized by space filling and self-similarity properties which results in considerable size reduction and multiband operation as compared to conventional microstrip antenna. This paper outlines a multiband antenna design based on fractal concepts. Fractal antennas show multiband behavior due to self-similarity in their structure. The plus shaped fractal antenna has been designed on a substrate of dielectric constant €r = 4.4 and thickness 1.6mm. The proposed antenna is characterized by a compact size and it is microstrip feed fractal patch of order 1/3. It is observed that the antenna is radiating at multiple resonant frequencies. The resonant frequency is reduced from 2.2 GHz to 900 MHz after I & II iterations respectively. Thus considerable size reduction of 81.77% & overall bandwidth of 12.92% are achieved. The proposed antenna is simulated using the method of moment based commercial software (IE3D) and it is found that simulated results are in good agreement with the experimental results.展开更多
In this paper, the resonance and radiation characteristics of patch antennas fabricated with two different types of dielectric substrates have been investigated and compared at GSM 1800 MHz band. At first, the above-s...In this paper, the resonance and radiation characteristics of patch antennas fabricated with two different types of dielectric substrates have been investigated and compared at GSM 1800 MHz band. At first, the above-stated characteristics of a patch antenna loaded with conventional plastic substrate have been investigated. Later a high permittivity dielectric material (barium titanate) has been used as the antenna substrate. The main goal here is to reduce the antenna size with a high permittivity dielectric material and then to compare its resonance and radiation performance with the earlier low permittivity substrate loaded prototype. It is found that with the use of high permittivity substrate the antenna volume gets smaller (about 6% of the plastic substrate prototype) although the gain decreases by around 2.5 dB.展开更多
The Z-type ferrites of nominal composition Ba3Co2 Fe24O41+x wt% Bi2O3, where x=0.25, 0.5, 1.0, 1.5, 2.0, were prepared by conventional ceramic processes. The influence of Bi2O3 content on the bulk densities, microstru...The Z-type ferrites of nominal composition Ba3Co2 Fe24O41+x wt% Bi2O3, where x=0.25, 0.5, 1.0, 1.5, 2.0, were prepared by conventional ceramic processes. The influence of Bi2O3 content on the bulk densities, microstructures, magnetic and dielectric properties of Z-type ferrite samples were systematically examined so as to obtain materials with low magnetic and dielectric loss tangent over a frequency ranging from 600 to 800 MHz. The experimental results showed that addition of Bi2O3 lowered the sintering temperature(1 020 ℃) and then reduced the average grain size(<2 μm) and enhanced the resistivity(>2.68×10^8 Ω·cm) dramatically, which consequently decreased the magnetic and dielectric loss. Additionally, the low loss factors were observed at the Bi2O3 content x = 1.0, i e, tan δμ/μ’=0.013 and tan δε/ε’= 0.001 at 800 MHz, and such materials could be used for antennas miniaturization from 600 to 800 MHz.展开更多
In this paper,a new approach of meander line technique for Printed Quadrifilar Helix Antenna(PQHA) is studied.Compared with other meander line techniques,this approach has lowered the axial height of antenna greatly a...In this paper,a new approach of meander line technique for Printed Quadrifilar Helix Antenna(PQHA) is studied.Compared with other meander line techniques,this approach has lowered the axial height of antenna greatly and improved the efficiency of model-building in simulation processing.We have focused on the analysis of radiation pattern,axial ratio,and design graph for the Meander line Printed Quadrifilar Helix Antenna(MPQHA).Finally,we have reduced successfully 67% size in geometry compared with traditional PQHA method,and obtained rather reasonable results.展开更多
The functionality of the plasma antenna has been narrowed to types and brand names only. The physics of its operation has been neglected and has stagnated technological innovations. The magnetic field in the sheath an...The functionality of the plasma antenna has been narrowed to types and brand names only. The physics of its operation has been neglected and has stagnated technological innovations. The magnetic field in the sheath and plasma were investigated. Notable specifications were worked out in the proposed improved cylindrical monopole plasma antenna. The occurrence of femto spin demagnetization was discovered between the duration of switch on and switch off of the antenna. This phenomenon seems transient because magnetization is highest at the switch on/off point.展开更多
In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. ...In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.展开更多
文摘Fractal antennas are characterized by space filling and self-similarity properties which results in considerable size reduction and multiband operation as compared to conventional microstrip antenna. This paper outlines a multiband antenna design based on fractal concepts. Fractal antennas show multiband behavior due to self-similarity in their structure. The plus shaped fractal antenna has been designed on a substrate of dielectric constant €r = 4.4 and thickness 1.6mm. The proposed antenna is characterized by a compact size and it is microstrip feed fractal patch of order 1/3. It is observed that the antenna is radiating at multiple resonant frequencies. The resonant frequency is reduced from 2.2 GHz to 900 MHz after I & II iterations respectively. Thus considerable size reduction of 81.77% & overall bandwidth of 12.92% are achieved. The proposed antenna is simulated using the method of moment based commercial software (IE3D) and it is found that simulated results are in good agreement with the experimental results.
文摘In this paper, the resonance and radiation characteristics of patch antennas fabricated with two different types of dielectric substrates have been investigated and compared at GSM 1800 MHz band. At first, the above-stated characteristics of a patch antenna loaded with conventional plastic substrate have been investigated. Later a high permittivity dielectric material (barium titanate) has been used as the antenna substrate. The main goal here is to reduce the antenna size with a high permittivity dielectric material and then to compare its resonance and radiation performance with the earlier low permittivity substrate loaded prototype. It is found that with the use of high permittivity substrate the antenna volume gets smaller (about 6% of the plastic substrate prototype) although the gain decreases by around 2.5 dB.
基金Funded by the National Natural Science Foundation of China(No.U1435209)Wuhan Science and Technology Program(No.2014010101010018)Fundamental Research Funds for the Central Universities(No.2015ZZGH007)
文摘The Z-type ferrites of nominal composition Ba3Co2 Fe24O41+x wt% Bi2O3, where x=0.25, 0.5, 1.0, 1.5, 2.0, were prepared by conventional ceramic processes. The influence of Bi2O3 content on the bulk densities, microstructures, magnetic and dielectric properties of Z-type ferrite samples were systematically examined so as to obtain materials with low magnetic and dielectric loss tangent over a frequency ranging from 600 to 800 MHz. The experimental results showed that addition of Bi2O3 lowered the sintering temperature(1 020 ℃) and then reduced the average grain size(<2 μm) and enhanced the resistivity(>2.68×10^8 Ω·cm) dramatically, which consequently decreased the magnetic and dielectric loss. Additionally, the low loss factors were observed at the Bi2O3 content x = 1.0, i e, tan δμ/μ’=0.013 and tan δε/ε’= 0.001 at 800 MHz, and such materials could be used for antennas miniaturization from 600 to 800 MHz.
文摘In this paper,a new approach of meander line technique for Printed Quadrifilar Helix Antenna(PQHA) is studied.Compared with other meander line techniques,this approach has lowered the axial height of antenna greatly and improved the efficiency of model-building in simulation processing.We have focused on the analysis of radiation pattern,axial ratio,and design graph for the Meander line Printed Quadrifilar Helix Antenna(MPQHA).Finally,we have reduced successfully 67% size in geometry compared with traditional PQHA method,and obtained rather reasonable results.
文摘The functionality of the plasma antenna has been narrowed to types and brand names only. The physics of its operation has been neglected and has stagnated technological innovations. The magnetic field in the sheath and plasma were investigated. Notable specifications were worked out in the proposed improved cylindrical monopole plasma antenna. The occurrence of femto spin demagnetization was discovered between the duration of switch on and switch off of the antenna. This phenomenon seems transient because magnetization is highest at the switch on/off point.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.