Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra...Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.展开更多
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser captu...Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy.展开更多
An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(...An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.展开更多
Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance tre...Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.展开更多
A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus...A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus L.Its structure was determined on the basis of spectroscopic data.This new compound showed anti-proliferation effect on vascular smooth muscle cells(VSMCs).展开更多
Objective: To determine the cytotoxicity, reduction in nitric oxide production and antioxidative activity of the aqueous leaf extract from Tithonia diversifolia(T. diversifolia) in an in vitro model.Methods: Leaves of...Objective: To determine the cytotoxicity, reduction in nitric oxide production and antioxidative activity of the aqueous leaf extract from Tithonia diversifolia(T. diversifolia) in an in vitro model.Methods: Leaves of T. diversifolia were collected from natural habitats and extracted with distilled water using the decoction method. The cytotoxic effect of the extract in terms of cell viability was determined using RAW264.7 cells and human peripheral blood mononuclear cells(PBMCs) via the mitochondrial respiration method using the MTT reagent. The effect of the extract on lipopolysaccharide(LPS)-induced nitric oxide production in RAW264.7 cells was measured using the Griess reagent. The chemical antioxidant was evaluated by ABTS- and DPPH-radical scavenging assays.Results: The half-maximal cytotoxic concentration values were 145.87 mg/m L and73.67 mg/m L for human PBMCs and RAW264.7 cells, respectively. In the presence of phytohemagglutinin-M, the IC_(50) on PBMCs proliferation was 4.42 mg/m L. The noncytotoxic range of the extracts inhibited LPS-induced nitrite production in RAW264.7 cells with an IC_(50) value of 11.63 mg/m L. To determine the anti-oxidative properties, the N-acetyl cysteine equivalent antioxidant capacity of the extract was(32.62 ± 1.87) and(20.99 ± 2.79)mg N-acetyl cysteine/g extract, respectively determined by the ABTS-radical and DPPHradical assay. However, the extract did not confer death protection in a hydrogen peroxideinduced RAW264.7 co-culturing model.Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-Minduced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.展开更多
Background: Granulosa cells(GCs) proliferation and estradiol synthesis significantly affect follicular development.The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yiel...Background: Granulosa cells(GCs) proliferation and estradiol synthesis significantly affect follicular development.The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yielding sows,indicating that miR-214-3p may be involved in sow fertility. However, the functions and mechanisms of miR-214-3p on GCs are unclear. This study focuses on miR-214-3p in terms of the effects on GCs proliferation and estradiol synthesis.Results: Our findings revealed that miR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine GCs. MiR-214-3p can increase the percentage of S-phase cells, the number of EdU labeled positive cells, and cell viability. However, E2 concentration was reduced after miR-214-3p agomir treatment. We also found that miR-214-3p up-regulates the expression of cell cycle genes including cell cycle protein B(Cyclin B), cell cycle protein D(Cyclin D), cell cycle protein E(Cyclin E), and cyclin-dependent kinase 4(CDK4) at the transcription and translation levels, but down-regulates the mRNA and protein levels of cytochrome P450 family 11 subfamily A member 1(CYP11A1), cytochrome P450 family 19 subfamily A member 1(CYP19A1), and steroidogenic acute regulatory protein(StAR)(i.e., the key enzymes in estradiol synthesis). On-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target genes of miR-214-3p in proliferation and estradiol synthesis are Mfn2 and NR5A1, respectively.Conclusions: Our findings suggest that miR-214-3 p plays an important role in the functional regulation of porcine GCs and therefore may be a target gene for regulating follicular development.展开更多
The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signalin...The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, mi R-103-3 p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that mi R-103-3 p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, mi R-103-3 p negatively regulated Nud E neurodevelopment protein 1-like 1(Ndel1) expression by binding to the 3′ untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3 a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel mi R-103-3 p target and that mi R-103-3 p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China(approval No. 20200826-003) on August 26, 2020.展开更多
BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is ...BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.展开更多
Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stab...Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stably and highly express miR-25-3p using recombinant reiroviral vector-mediated gene transfer method.The proliferation of transfected Tca8113 was detected by thiazolyl blue tetrazolium bromide(MTT)and cell colony formation assays.eyclnD1,p21^(cipt)and p27^(kipt)mRNA expressions in the transfected Tca-8113 were detected by quantitative PCR.cyclinD1,p21^(cipt),p27^(kipt),AKT,p-AKT,FOXOt and p-FOX01 expressions in the transfected Tca8113 were detected by western blot analysis.In addition,miR-25-3p expression in the tongue squamous cell carcinoma cell line and tissue specimen was also detected by quantitative PCR.Results:Quantitative PCR showed that mitt-25-3p expression in the tongue squamous cell carcinoma cell lines and tissue specimen was significantly lower than that in the adjacent tissue.MTT and cell colony formation assays showed that after miR-25-3p overexpression,the proliferation of transfected Tca8113 was obviously attenuated.Western blot analysis and quantitative PCR showed that after miR-25-3p overexpression.p21^(cipt)and p27^(kipt)expressions were upregulated,while cyclinD1,AKT,FOXO1 expressions were downregulated,and AKT and FOXO1 phosphorylation was inactivated in the transfected Tca8113 cells.Conclusions:MiR-25-3p inhibited the proliferation of tongue squamous cell carcinoma cells and regulated cell cycle-related protein expression,playing an important role in the occurrence and development of squamous cell carcinoma of the tongue.展开更多
In the present study, we constructed a lentivirus, FIV-CMV-GFP-miR-7-3, containing the microRNA-7-3 gene and the green fluorescent protein gene, and used it to transfect human glioma U251 cells. Fluorescence microscop...In the present study, we constructed a lentivirus, FIV-CMV-GFP-miR-7-3, containing the microRNA-7-3 gene and the green fluorescent protein gene, and used it to transfect human glioma U251 cells. Fluorescence microscopy showed that 80% of U251 cells expressed green fluorescence. Real-time reverse transcription PCR showed that microRNA-7-3 RNA expression in U251 cells was significantly increased. Proliferation was slowed in transfected U251 cells, and most cells were in the G1 phase of the cell cycle. In addition, the expression of the serine/threonine protein kinase 2 was decreased. Results suggested that transfection with a lentivirus carrying microRNA-7-3 can effectively suppress epidermal growth factor receptor pathway activity in U251 cells, arrest cell cycle transition from GI phase to S phase and inhibit glioma cell growth.展开更多
AIM: To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon's capsule, both in vitro and in vivo.· METHODS: Human primary Tenon's capsule fibroblasts...AIM: To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon's capsule, both in vitro and in vivo.· METHODS: Human primary Tenon's capsule fibroblasts were cultured in vitro, treated with up titrating concentrations of olmesartan. The rate of inhibition was tested with methyl thiazol tetrazolium(MTT) method.Real-time PCR was performed to analyze changes in m RNA expressions of the fibrosis-related factors: matrix metalloproteinase-2(MMP-2), tissue inhibitor of metalloproteinase(TIMP-1,2) and proliferating cell nuclear antigen(PCNA). Thirty rabbits were divided into5 groups(3, 7, 14, 21, and 28d). A rabbit conjunctiva flap model was created in each eye. Olmesartan solution was injected subconjunctivally and then evaluated its anti-proliferation and anti-fibrosis effects through the histological morphology and immunohistochemistry of MMP-2 and PCNA in each group. Only the 7d group was treated with Masson's trichrome to compare the neovascularization in the subconjunctiva area.·RESULTS: In vitro, cultured Tenon's capsule human fibroblasts showed a dose dependent inhibition by olmesartan in MTT. Olmesartan reduced m RNA expressions of MMP-2 and PCNA but increased m RNA expressions of TIMP-1 and TIMP-2. In vivo, the rabbit eyes treated with olmesartan at 3rd, 7th, 14 thand 21stdays demonstrated a significant reduced expressions of MMP-2 and PCNA compared with control eye, no significant difference observed in 28 thday group. The cellular proliferation and neovascularization was suppressed by olmesartan in Masson's trichrome observation.·CONCLUSION: By inhibiting fibroblasts in vitro and in vivo, olmesartan prevents the proliferation and activity of fibroblasts in scar tissue formation, which might benefit glaucoma filtering surgery.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle ce...Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.展开更多
Objective: The aim of this study was to explore the effects on malignant proliferation of A549 cell by silencing cy-clooxygenase (COX)-2. Methods: In the present study, we constructed three siRNA vectors producing sma...Objective: The aim of this study was to explore the effects on malignant proliferation of A549 cell by silencing cy-clooxygenase (COX)-2. Methods: In the present study, we constructed three siRNA vectors producing small interference RNA. The siRNA vectors and the vacant vectors were transfected into A549 cell with lipofectamine respectively and the transfected cell strains were constructed. The change of COX-2 expression levels was examined by Western blot and RT-PCR. The effects on the proliferation of lung cancer cells were studied by cell growth curve, clonogenic assay and xenograft assays. Results: The siRNA expression vectors produced marked effects in A549 cell but the inhibited effects were different. The effect of psi-10 was best and the mRNA and protein levels of COX-2 reduced 61.2% and 56.2% respectively in A549-si10 cell in contrast to the control. The growth of A549 cell slowed and the colony formation rate reduced after silencing COX-2. In xenograft assays, the growth speeds of tumor became slow and the numbers of tumor reduced after silencing COX-2. Conclusion: The si10 target of COX-2 has the best silencing effect in A549 cell and the best inhibition effect on malignant proliferation of A549 cell in vivo and in vitro.展开更多
利用Arnol'd的Legendrian理论,对三维Anti de Sitter空间中Lorentzian曲面进行了研究.引入光维高度函数概念研究了三维Anti de Sitter空间Lorentzian曲面的S1t×S1s-值、光锥Gauss映射的奇点,进行了奇点分类,揭示了类光Causs-kr...利用Arnol'd的Legendrian理论,对三维Anti de Sitter空间中Lorentzian曲面进行了研究.引入光维高度函数概念研究了三维Anti de Sitter空间Lorentzian曲面的S1t×S1s-值、光锥Gauss映射的奇点,进行了奇点分类,揭示了类光Causs-kronecker曲率之间的关系;并研究了Lorentzian曲面的一些基本几何性质.展开更多
基金supported by the National Natural Science Foundation of China(32272849)the National Key R&D Program of China(2021YFF1000602)the earmarked fund for CARS-35-PIG。
文摘Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.
基金supported by the National Natural Science Foundation of China[Grant Number:81972803]。
文摘Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy.
基金The Fund of National Cancer Center Research and Development(26-A-4),The Grants-in-Aid for Scientific Research(Grant Nos.15K10451,16K10866 and 16K20063)from Japan Society for the Promotion of Science.
文摘An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.
文摘Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
基金supported by 2006 Great Basic Science Research Project of Jiangsu College and University(No. 06KJA36022)
文摘A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus L.Its structure was determined on the basis of spectroscopic data.This new compound showed anti-proliferation effect on vascular smooth muscle cells(VSMCs).
基金Supported by the Institute of Research and Development,Walailak University,Thailand(Grant No.WU55304)
文摘Objective: To determine the cytotoxicity, reduction in nitric oxide production and antioxidative activity of the aqueous leaf extract from Tithonia diversifolia(T. diversifolia) in an in vitro model.Methods: Leaves of T. diversifolia were collected from natural habitats and extracted with distilled water using the decoction method. The cytotoxic effect of the extract in terms of cell viability was determined using RAW264.7 cells and human peripheral blood mononuclear cells(PBMCs) via the mitochondrial respiration method using the MTT reagent. The effect of the extract on lipopolysaccharide(LPS)-induced nitric oxide production in RAW264.7 cells was measured using the Griess reagent. The chemical antioxidant was evaluated by ABTS- and DPPH-radical scavenging assays.Results: The half-maximal cytotoxic concentration values were 145.87 mg/m L and73.67 mg/m L for human PBMCs and RAW264.7 cells, respectively. In the presence of phytohemagglutinin-M, the IC_(50) on PBMCs proliferation was 4.42 mg/m L. The noncytotoxic range of the extracts inhibited LPS-induced nitrite production in RAW264.7 cells with an IC_(50) value of 11.63 mg/m L. To determine the anti-oxidative properties, the N-acetyl cysteine equivalent antioxidant capacity of the extract was(32.62 ± 1.87) and(20.99 ± 2.79)mg N-acetyl cysteine/g extract, respectively determined by the ABTS-radical and DPPHradical assay. However, the extract did not confer death protection in a hydrogen peroxideinduced RAW264.7 co-culturing model.Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-Minduced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.
基金supported by grants from the National Natural Science Foundation (No.31802047)the National Science and Technology Major Project of China (No. 2016ZX08006003)Shaanxi Provincial Key Research and Development Project (CN)(No. 2018ZDXM-NY-035)。
文摘Background: Granulosa cells(GCs) proliferation and estradiol synthesis significantly affect follicular development.The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yielding sows,indicating that miR-214-3p may be involved in sow fertility. However, the functions and mechanisms of miR-214-3p on GCs are unclear. This study focuses on miR-214-3p in terms of the effects on GCs proliferation and estradiol synthesis.Results: Our findings revealed that miR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine GCs. MiR-214-3p can increase the percentage of S-phase cells, the number of EdU labeled positive cells, and cell viability. However, E2 concentration was reduced after miR-214-3p agomir treatment. We also found that miR-214-3p up-regulates the expression of cell cycle genes including cell cycle protein B(Cyclin B), cell cycle protein D(Cyclin D), cell cycle protein E(Cyclin E), and cyclin-dependent kinase 4(CDK4) at the transcription and translation levels, but down-regulates the mRNA and protein levels of cytochrome P450 family 11 subfamily A member 1(CYP11A1), cytochrome P450 family 19 subfamily A member 1(CYP19A1), and steroidogenic acute regulatory protein(StAR)(i.e., the key enzymes in estradiol synthesis). On-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target genes of miR-214-3p in proliferation and estradiol synthesis are Mfn2 and NR5A1, respectively.Conclusions: Our findings suggest that miR-214-3 p plays an important role in the functional regulation of porcine GCs and therefore may be a target gene for regulating follicular development.
基金supported by Graduate Scientific Research Innovation Program of Jiangsu Province of China,No.KYCX192066(to WL)Project Funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education institutions China,No.03081023(to GHJ)。
文摘The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, mi R-103-3 p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that mi R-103-3 p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, mi R-103-3 p negatively regulated Nud E neurodevelopment protein 1-like 1(Ndel1) expression by binding to the 3′ untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3 a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel mi R-103-3 p target and that mi R-103-3 p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China(approval No. 20200826-003) on August 26, 2020.
基金Supported by the Ningxia Natural Science Foundation,No.2022AAC03144.
文摘BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
基金Supported by Key Disciplines Group Construetion Project of Pudong Health Bureau of Shanghai(Grant No.PWZxk2010-12)
文摘Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stably and highly express miR-25-3p using recombinant reiroviral vector-mediated gene transfer method.The proliferation of transfected Tca8113 was detected by thiazolyl blue tetrazolium bromide(MTT)and cell colony formation assays.eyclnD1,p21^(cipt)and p27^(kipt)mRNA expressions in the transfected Tca-8113 were detected by quantitative PCR.cyclinD1,p21^(cipt),p27^(kipt),AKT,p-AKT,FOXOt and p-FOX01 expressions in the transfected Tca8113 were detected by western blot analysis.In addition,miR-25-3p expression in the tongue squamous cell carcinoma cell line and tissue specimen was also detected by quantitative PCR.Results:Quantitative PCR showed that mitt-25-3p expression in the tongue squamous cell carcinoma cell lines and tissue specimen was significantly lower than that in the adjacent tissue.MTT and cell colony formation assays showed that after miR-25-3p overexpression,the proliferation of transfected Tca8113 was obviously attenuated.Western blot analysis and quantitative PCR showed that after miR-25-3p overexpression.p21^(cipt)and p27^(kipt)expressions were upregulated,while cyclinD1,AKT,FOXO1 expressions were downregulated,and AKT and FOXO1 phosphorylation was inactivated in the transfected Tca8113 cells.Conclusions:MiR-25-3p inhibited the proliferation of tongue squamous cell carcinoma cells and regulated cell cycle-related protein expression,playing an important role in the occurrence and development of squamous cell carcinoma of the tongue.
基金supported by the Science and Technology Foundation Program of Jiangsu Province(Tumorigenic nucleostemin genes and adenovirus-based RNA interference targeting to brain tumor stem cell the rapy),No.BK2007072
文摘In the present study, we constructed a lentivirus, FIV-CMV-GFP-miR-7-3, containing the microRNA-7-3 gene and the green fluorescent protein gene, and used it to transfect human glioma U251 cells. Fluorescence microscopy showed that 80% of U251 cells expressed green fluorescence. Real-time reverse transcription PCR showed that microRNA-7-3 RNA expression in U251 cells was significantly increased. Proliferation was slowed in transfected U251 cells, and most cells were in the G1 phase of the cell cycle. In addition, the expression of the serine/threonine protein kinase 2 was decreased. Results suggested that transfection with a lentivirus carrying microRNA-7-3 can effectively suppress epidermal growth factor receptor pathway activity in U251 cells, arrest cell cycle transition from GI phase to S phase and inhibit glioma cell growth.
基金the Scientific Research and Laboratory Center of the Second Affiliated Hospital of Xi'an Jiaotong University for the technical support
文摘AIM: To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon's capsule, both in vitro and in vivo.· METHODS: Human primary Tenon's capsule fibroblasts were cultured in vitro, treated with up titrating concentrations of olmesartan. The rate of inhibition was tested with methyl thiazol tetrazolium(MTT) method.Real-time PCR was performed to analyze changes in m RNA expressions of the fibrosis-related factors: matrix metalloproteinase-2(MMP-2), tissue inhibitor of metalloproteinase(TIMP-1,2) and proliferating cell nuclear antigen(PCNA). Thirty rabbits were divided into5 groups(3, 7, 14, 21, and 28d). A rabbit conjunctiva flap model was created in each eye. Olmesartan solution was injected subconjunctivally and then evaluated its anti-proliferation and anti-fibrosis effects through the histological morphology and immunohistochemistry of MMP-2 and PCNA in each group. Only the 7d group was treated with Masson's trichrome to compare the neovascularization in the subconjunctiva area.·RESULTS: In vitro, cultured Tenon's capsule human fibroblasts showed a dose dependent inhibition by olmesartan in MTT. Olmesartan reduced m RNA expressions of MMP-2 and PCNA but increased m RNA expressions of TIMP-1 and TIMP-2. In vivo, the rabbit eyes treated with olmesartan at 3rd, 7th, 14 thand 21stdays demonstrated a significant reduced expressions of MMP-2 and PCNA compared with control eye, no significant difference observed in 28 thday group. The cellular proliferation and neovascularization was suppressed by olmesartan in Masson's trichrome observation.·CONCLUSION: By inhibiting fibroblasts in vitro and in vivo, olmesartan prevents the proliferation and activity of fibroblasts in scar tissue formation, which might benefit glaucoma filtering surgery.
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
文摘Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.
文摘Objective: The aim of this study was to explore the effects on malignant proliferation of A549 cell by silencing cy-clooxygenase (COX)-2. Methods: In the present study, we constructed three siRNA vectors producing small interference RNA. The siRNA vectors and the vacant vectors were transfected into A549 cell with lipofectamine respectively and the transfected cell strains were constructed. The change of COX-2 expression levels was examined by Western blot and RT-PCR. The effects on the proliferation of lung cancer cells were studied by cell growth curve, clonogenic assay and xenograft assays. Results: The siRNA expression vectors produced marked effects in A549 cell but the inhibited effects were different. The effect of psi-10 was best and the mRNA and protein levels of COX-2 reduced 61.2% and 56.2% respectively in A549-si10 cell in contrast to the control. The growth of A549 cell slowed and the colony formation rate reduced after silencing COX-2. In xenograft assays, the growth speeds of tumor became slow and the numbers of tumor reduced after silencing COX-2. Conclusion: The si10 target of COX-2 has the best silencing effect in A549 cell and the best inhibition effect on malignant proliferation of A549 cell in vivo and in vitro.
文摘利用Arnol'd的Legendrian理论,对三维Anti de Sitter空间中Lorentzian曲面进行了研究.引入光维高度函数概念研究了三维Anti de Sitter空间Lorentzian曲面的S1t×S1s-值、光锥Gauss映射的奇点,进行了奇点分类,揭示了类光Causs-kronecker曲率之间的关系;并研究了Lorentzian曲面的一些基本几何性质.