期刊文献+
共找到10,425篇文章
< 1 2 250 >
每页显示 20 50 100
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
1
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing scheduling chimp optimization algorithm whale optimization algorithm
下载PDF
A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem
2
作者 Deming Lei Heen Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期1855-1874,共20页
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed... This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems. 展开更多
关键词 Release time ASSIMILATION imperialist competitive algorithm batch processing machines scheduling
下载PDF
Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm
3
作者 Qinhui Liu Laizheng Zhu +2 位作者 Zhijie Gao Jilong Wang Jiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期811-843,共33页
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p... To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research. 展开更多
关键词 Dual resource scheduling workpiece batching REscheduling particle swarm optimization genetic algorithm
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
4
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
5
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
Review on Service Curves of Typical Scheduling Algorithms
6
作者 GAO Yuehong NING Zhi +4 位作者 HE Jia ZHOU Jinfei GAO Chenqiang TANG Qingkun YU Jinghai 《ZTE Communications》 2024年第2期55-70,共16页
In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the q... In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights. 展开更多
关键词 network calculus service curve scheduling algorithm QOS
下载PDF
Scheduling Model and Algorithm of Construction Equipment under Milestone Constraint
7
作者 Miao HU 《Meteorological and Environmental Research》 2024年第3期32-35,41,共5页
The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain ... The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain has become very important,and effective coordination of project plans at all levels to optimize the resource management and scheduling of a project is helpful to reduce project duration and cost.In this paper,under the milestone constraint conditions,the scheduling problems of multiple construction devices in the same sequence of operation were described and hypothesized mathematically,and the scheduling models of multiple equipment were established.The Palmer algorithm,CDS algorithm and Gupta algorithm were respectively used to solve the optimal scheduling of construction equipment to achieve the optimization of the construction period.The optimization scheduling of a single construction device and multiple construction devices was solved by using sequencing theory under milestone constraint,and these methods can obtain reasonable results,which has important guiding significance for the scheduling of construction equipment. 展开更多
关键词 Milestone Equipment scheduling Resource constraint algorithm analysis
下载PDF
Algorithms for Multicriteria Scheduling Problems to Minimize Maximum Late Work, Tardy, and Early
8
作者 Karrar Alshaikhli Aws Alshaikhli 《Journal of Applied Mathematics and Physics》 2024年第2期661-682,共22页
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote... This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time. 展开更多
关键词 scheduling Single Machine Hierarchical Simultaneous Minimization algorithmS Branch and Bound Local Search Heuristic Methods
下载PDF
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
9
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
下载PDF
Novel operating theatre scheduling method based on estimation of distribution algorithm 被引量:3
10
作者 周炳海 殷萌 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期112-118,共7页
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA... In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients. 展开更多
关键词 operating theatre scheduling estimation of distribution algorithm MAKESPAN
下载PDF
Rolling horizon scheduling algorithm for dynamic vehicle scheduling system 被引量:1
11
作者 贾永基 谷寒雨 席裕庚 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期92-96,共5页
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th... Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem. 展开更多
关键词 dynamic vehicle scheduling rolling horizon scheduling algorithm EXCLUSIVE pickup and delivery problem with time windows (PDPTW)
下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
12
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
下载PDF
Infeasibility test algorithm and fast repair algorithm of job shop scheduling problem
13
作者 孙璐 黄志 +1 位作者 张惠民 顾文钧 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期88-91,共4页
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori... To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility. 展开更多
关键词 INFEASIBILITY job shop scheduling repairing algorithm
下载PDF
Aheuristic Algorithm for Berth Scheduling Problem in Container Ports
14
作者 张海滨 《科技信息》 2011年第3期I0185-I0186,共2页
In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is ... In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is proposed to solve the model.Simulation results show that the algorithm can improve the utilization of berths on discrete berth scheduling in the container port. 展开更多
关键词 BERTH scheduling TWO-DIMENSIONAL PACKING HEURISTIC algorithm
下载PDF
A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems 被引量:37
15
作者 Kaizhou Gao Zhiguang Cao +3 位作者 Le Zhang Zhenghua Chen Yuyan Han Quanke Pan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第4期904-916,共13页
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,... Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions. 展开更多
关键词 EVOLUTIONARY algorithm flexible JOB SHOP scheduling REVIEW SWARM INTELLIGENCE
下载PDF
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling 被引量:12
16
作者 SHU Wanneng ZHENG Shijue 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1378-1382,共5页
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i... In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing. 展开更多
关键词 grid computing task scheduling genetic algorithm simulated annealing PGSAHA algorithm
下载PDF
Blending Scheduling under Uncertainty Based on Particle Swarm Optimization Algorithm 被引量:16
17
作者 ZHAO Xiaoqiang(赵小强) +1 位作者 RONG Gang(荣冈) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期535-541,共7页
Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. ... Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem. 展开更多
关键词 blending scheduling UNCERTAINTY gasoline blending particle swarm optimization algorithm nonlinear optimization
下载PDF
Rolling optimization algorithm based on collision window for single machine scheduling problem 被引量:4
18
作者 Wang Changjun Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期816-822,共7页
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the... Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability. 展开更多
关键词 single machine scheduling rolling scheduling performance analysis heuristic algorithm.
下载PDF
Dynamic and Integrated Load-Balancing Scheduling Algorithm for Cloud Data Centers 被引量:6
19
作者 田文洪 赵勇 +2 位作者 仲元椋 徐敏贤 景晨 《China Communications》 SCIE CSCD 2011年第6期117-126,共10页
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider... One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time. 展开更多
关键词 cloud computing load balance dynamic and integrated resource scheduling algorithm cloud datacenter
下载PDF
Utility function based fair data scheduling algorithm for OFDM wireless network 被引量:3
20
作者 Guo Kunqi Sun Lixin Jia Shilou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期731-738,共8页
A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subca... A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions. 展开更多
关键词 OFDM scheduling algorithm utility function.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部