Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from...Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from R.rosea plant,with many pharmacological effects such as anti-cancer effect,anti-oxidant effect and anti-inflammatory effect.In this paper,the pharmacological effects and molecular mechanisms of herbacetin were summarized by consulting domestic and foreign literature,in order to provide a theoretical basis for the development and utilization of herbacetin.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized b...Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized by the elongation of very long fatty acids-4(ELOVL4) enzyme, expressed mainly in the brain, retina, skin, testes, and meibomian gland, where these fatty acids are found(Agbaga et al., 2008). Further, these organs exhibit tissuespecific VLC-PUFA and VLC-SFA biosynthesis and incorporation into complex lipids for specific functions. In the brain, skin, and Meibomian glands, the ELOVL4 mainly makes VLC-SFA, which are incorporated into complex sphingolipids. In the retina, the ELOVL4 makes VLC-PUFA that are incorporated into phosphatidylcholine, that are critical for visual function, while in testes and sperm, the VLC-PUFA are incorporated into sphingolipids that are critical for fertility(Yeboah et al., 2021).展开更多
Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset cluste...Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Ne...There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.展开更多
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration...Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.展开更多
There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons...There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons et al.,2024).Diverse sets of distinct molecular signaling pathways converge on the synapse to regulate synaptogenesis,synaptic function,and synaptic plasticity in brain regions and circuits through complex interactions organized by numerous multivalent protein scaffolds,including the family of proteins known as A-kinase anchoring proteins(AKAPs).展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ...The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulati...We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulation in four varieties of ryegrass (Loliurn perenne L.) hy pot cuhure experiment. The results showed that plant hiomass increased at the ranges of 0-2 (Tuoya), 0-4 (Yey- ing), 0-8 mmol·kg^-1(Airuisi and Taide), respectively, and then decreased under excess Zn. The activities of POD ,SOD and proline content in shoots decreased firstly, and then increased with the in crease of Zn content. The plaut biomass, activities of POD and SOD in Taide were evidently higher than in the other three varie ties. Root tolerance index (RTI) and Zn transport ratio from root to shoot (S/R) in Taide were exceed 1. 0. The maximum of Zn content was 583.9 mg/kg ( at 16 mmol·kg^-1) in Taide's shoot.展开更多
Polypehnol is an important,potentially bioactive component of Sargassum muticum.In this study,ultrasonic assisted extraction of polyphenol-rich substances was performed using a 38%ethanol solution at a solid:liquid ra...Polypehnol is an important,potentially bioactive component of Sargassum muticum.In this study,ultrasonic assisted extraction of polyphenol-rich substances was performed using a 38%ethanol solution at a solid:liquid ratio of 1:30 at 68℃ for 32min,determined by single-factor and response surface methodology(RSM)optimization.The content of polyphenol was 5.66mg/g in the crude extract.Further extraction showed that the polyphenol mainly distributed in ethyl acetate(SKEE)and water phases(SKEW).The anti-oxidation test by electron spin resonance(ESR)spectrum showed that the SKEE had the strongest scavenging activity on DPPH(1,1-diphenyl-2-picrylhydrazyl)and alkyl radicals.SKEE was shown noncytotoxic but could inhibit the generation of cellular ROS,showing protective effects in H2O2 and AAPHinduced Vero cells and UV-B irradiated HaCaT cells.SKEE also signifi cantly inhibited the release of NO of LPS-induced RAW 264.7 cells.Therefore,the polyphenol-rich extracts in ethanol and ethyl acetate showed excellent anti-oxidant and anti-infl ammatory activities,which is beneficial to the development of high-value bio-substances.展开更多
Aim: To study the immune-modulating and anti-oxidant effects of beta-glucan, papaya, lactoferrin, and vitamins C and E on sperm characteristics of patients with asthenoteratozoospermia associated with leucocytosis. M...Aim: To study the immune-modulating and anti-oxidant effects of beta-glucan, papaya, lactoferrin, and vitamins C and E on sperm characteristics of patients with asthenoteratozoospermia associated with leucocytosis. Methods: Fifty-one patients referred to our Sterility Center for semen analysis were selected. Sperm parameters were assessed before and after patient's treatment with beta-glucan, lactoferrin, papaya, and vitamins C and E. DNA damage was assessed by the acridine orange test and sperm structural characteristics were evaluated by transmission electron microscopy. Results: After 90 days of treatment, an increase in the percentage of morphologically normal sperm (17.0 ± 5.2 vs. 29.8 ± 6.5) and total progressive motility (19.0± 7.8 vs. 34.8 ± 6.8) were detected. Structural sperm characteristics as well as chromatin integrity were also improved after treatment. In terms of leukocyte concentration in seminal fluid, a significant reduction was recorded (2.2 ± 0.9 vs. 0.9± 0.2). Conclusion: The treatment of an inflammatory process by the synergic action of immune modulators and anti-oxidants could protect sperm during maturation and migration, leading to improved sperm function. (Asian JAndrol 2008 Mar;. 10: 201-206)展开更多
Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is relat...Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is related to anti-oxidative stress is not clear. To reveal its mechanism, we established the optic nerve transection injury model by transecting 1 mm behind the left eyeball of adult male Sprague-Dawley rats. The rats received an intraperitoneal injection of etomidate(4 mg/kg) once per day for 7 days. The results showed that etomidate significantly enhanced the number of retinal ganglion cells retrogradely labeled with Fluorogold at 7 days after optic nerve transection. Etomidate also significantly reduced the levels of nitric oxide and malonaldehyde in the retina and increased the level of glutathione at 12 hours after optic nerve transection. Thus, etomidate can protect retinal ganglion cells after optic nerve transection in adult rats by activating an anti-oxidative stress response. The study was approved by the Animal Ethics Committee at Air Force Medical University, China(approval No. 20180305) on March 5, 2018.展开更多
Pu-erh tea, a traditional Chinese beverage, has been believed to have many benefits to human health and without side effects. In this study, we systematically analyzed the main active components of Pu-erh tea and inve...Pu-erh tea, a traditional Chinese beverage, has been believed to have many benefits to human health and without side effects. In this study, we systematically analyzed the main active components of Pu-erh tea and investigated its anti-obesity, anti-atherosclerotic and anti-oxidant effects using an obese rat model. Obesity was induced by feeding a high-fat diet and subsequently the experimental obese mice were fed with high-fat diet supplemented with low (2.5%), medium (5%) or high (7.5%) doses of Pu-erh tea powder for 6 weeks respectively. As result, the body weight gain of the rats was decreased by medium and high doses of Pu-erh tea treatments. Furthermore, the levels of serum total cholesterol (TC), triglyceride (TG) and atherosclerosis index (AI) were significantly lowered by Pu-erh tea compared to the control group. Conversely, high density lipoproteincholesterol (HDL-C) level of the rats was significantly elevated by Pu-erh tea treatments. In addition, Pu-erh tea treatments increased the activities of anti-oxidative enzymes such as superoxide dismutase (SOD) and glutathione peroxides (GSH-Px), whereas reduced the level of lipid peroxidation product malondialdehyde (MDA) in obese rats. Collectively, our find-ings revealed that Pu-erh tea exerts comprehensive benefits in anti-obesity, anti-atherosclerotic and anti-oxidant effects, therefore can be used as a promising functional food in obesity management.展开更多
Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like diet...Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC) ; the anti-oxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest anti-oxidant extract of this alga, which is significantly different from activity. The highest chelation on ferrous ions is also found in the the other methanol extracts in both 3 and 24 h incubations.展开更多
Two new hydralazine hydrochloride-derived Schiff bases</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span><span style="...Two new hydralazine hydrochloride-derived Schiff bases</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span><span style="font-family:Verdana;"> (E)-1-(Phthalazin-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">1-yl)-1-[(Pyridin-2-yl)Ethylidene]Hydralazine (PPEH), and 1-[2-(1-(pyridine-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">3</span><span style="font-family:Verdana;">-yl)ethylidene)hydrazinyl]phthalazine (PEHP), were synthesized and partially characterized by spectroscopic and crystallographic methods including IR and X-ray. The single-crystal X-ray diffraction (SCXRD) analysis of PEHP indicate</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> that the hydralazine moiety of both ligands possess</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span><span style="font-family:Verdana;"> the exoc</span><span style="font-family:Verdana;">yclic C=N bond. Both, PPEH and PEHP were tested as antimicrobials and antiparasites. Just PEHP could be considered as slightly antiplasmodial and antibacterial agent. In effect, PPEH showed low antimicrobial activity against one bacterial strain with Minimum Inhibitory Concentration (MIC) value of 250 μg/ml while PEHP showed very interesting activity against 18 out of 19 bacterial strains with MIC of 31.25 </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"> 250 μg/ml compared to the standard drug, amoxicillin. PPEH and PEHP showed higher reducing activity on ferric ions compared to Vitamin C. On the other hand, both hidrazaline synthetized derivatives show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> as better reducing agents than Vitamin C on ferric ions, while again, only the PEHP show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> slightly high inhibition of lipid peroxidation using Vitamin C as standard. Regarding their catalase activity, both compounds show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> concentration dependent effect, but Vitamin C continued showing a higher stimulatory effect on the enzyme activity. Additionally, while PPEH showed less than 80% inhibition in the preliminary antiplasmodial assay and so was not considered for the dose-response studies, PEHP</span><span style="font-family:Verdana;"> displayed an inhibition percentage of 83.60% and 50% Inhibitory Concentration (IC</span><sub><span style="font-family:Verdana;vertical-align:sub;">50</span></sub><span style="font-family:Verdana;">) value of 44.13 μg/mL compared to the standard drug, artemisinin and was classified as slightly active</span><span style="font-family:Verdana;">.展开更多
In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase(SOD), catalase, glutathione...In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase(SOD), catalase, glutathione reductase(GR), uric acid, vitamin E(VE) and vitamin C(VC) were more abundant in seminal plasma than in spermatozoa. The variation for each of them was specific. In seminal plasma, the activity of SOD and GR increased from November 15, November 30 to December 15, and then decreased on December 30. The concentrations of both VC and uric acid decreased during the first 3 sampling times and increased on December 30. The oxidants in seminal plasma accumulated to the highest on December 30. Lactic acid(LA) and ATP levels decreased to the lowest on December 30. The correlation analysis showed that GR had the significant positive relevance to sperm motility and VSL/VCL, while ·OH had negative relevance to them.展开更多
基金Supported by Talent Training Project of Central Support for the Reform and Development Fund of Local Colleges and Universities(2020GSP16)Heilongjiang Provincial Key R&D Plan Guidance Project(GZ20220039)Daqing Guiding Science and Technology Project(zdy-2024-91).
文摘Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from R.rosea plant,with many pharmacological effects such as anti-cancer effect,anti-oxidant effect and anti-inflammatory effect.In this paper,the pharmacological effects and molecular mechanisms of herbacetin were summarized by consulting domestic and foreign literature,in order to provide a theoretical basis for the development and utilization of herbacetin.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by NEI/NIH R01 EY030513NIAMS/NIH R21-AR076035Multi-PI Team Science grant from Presbyterian Health Foundation。
文摘Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized by the elongation of very long fatty acids-4(ELOVL4) enzyme, expressed mainly in the brain, retina, skin, testes, and meibomian gland, where these fatty acids are found(Agbaga et al., 2008). Further, these organs exhibit tissuespecific VLC-PUFA and VLC-SFA biosynthesis and incorporation into complex lipids for specific functions. In the brain, skin, and Meibomian glands, the ELOVL4 mainly makes VLC-SFA, which are incorporated into complex sphingolipids. In the retina, the ELOVL4 makes VLC-PUFA that are incorporated into phosphatidylcholine, that are critical for visual function, while in testes and sperm, the VLC-PUFA are incorporated into sphingolipids that are critical for fertility(Yeboah et al., 2021).
基金supported by a grant from Telethon Foundation(grant No.GGP20056 to SB)The generation of Pcdh19 floxed mouse model was funded by Cariplo Foundation(grant No.2014-0972 to SB)。
文摘Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
文摘There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.
基金supported in part by NIH R01 NS100531,R01 NS103481NIH R21NS130241(to LD)+3 种基金Merit Review Award I01 BX002356,I01 BX003705 from the U.S.Department of Veterans AffairsIndiana Spinal Cord and Brain Injury Research Foundation(No.19919)Mari Hulman George Endowment Funds(to XMX)Indiana Spinal Cord&Brain Injury Research Fund from ISDH(to NKL and LD)。
文摘Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
基金supported by the National Institute of Mental Health (NIH/NIMH)the National Institute of Neurological Disorders and Stroke(NIH/NINDS):Grants#R21 MH132136 to FSN and R01 MH123700 and R01 NS040701 to MLD
文摘There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons et al.,2024).Diverse sets of distinct molecular signaling pathways converge on the synapse to regulate synaptogenesis,synaptic function,and synaptic plasticity in brain regions and circuits through complex interactions organized by numerous multivalent protein scaffolds,including the family of proteins known as A-kinase anchoring proteins(AKAPs).
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82071387(to HT),81971172(to YW)the Natural Science Foundation of Zhejiang Province,China,No.LY22H090012(to HT)the Basic Research Project of Wenzhou City,China,No.Y20220923(to MZ)。
文摘The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金Supported by the National Natural Science Foundation ofChina (29877021)
文摘We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulation in four varieties of ryegrass (Loliurn perenne L.) hy pot cuhure experiment. The results showed that plant hiomass increased at the ranges of 0-2 (Tuoya), 0-4 (Yey- ing), 0-8 mmol·kg^-1(Airuisi and Taide), respectively, and then decreased under excess Zn. The activities of POD ,SOD and proline content in shoots decreased firstly, and then increased with the in crease of Zn content. The plaut biomass, activities of POD and SOD in Taide were evidently higher than in the other three varie ties. Root tolerance index (RTI) and Zn transport ratio from root to shoot (S/R) in Taide were exceed 1. 0. The maximum of Zn content was 583.9 mg/kg ( at 16 mmol·kg^-1) in Taide's shoot.
基金Supported by the Public Science and Technology Research Funds Projects of Ocean(No.201505022)the Shandong Province Key Research and Development Project(No.2017YYSP003)the Natural Science Foundation of Shandong Province(No.ZR2017MD006)
文摘Polypehnol is an important,potentially bioactive component of Sargassum muticum.In this study,ultrasonic assisted extraction of polyphenol-rich substances was performed using a 38%ethanol solution at a solid:liquid ratio of 1:30 at 68℃ for 32min,determined by single-factor and response surface methodology(RSM)optimization.The content of polyphenol was 5.66mg/g in the crude extract.Further extraction showed that the polyphenol mainly distributed in ethyl acetate(SKEE)and water phases(SKEW).The anti-oxidation test by electron spin resonance(ESR)spectrum showed that the SKEE had the strongest scavenging activity on DPPH(1,1-diphenyl-2-picrylhydrazyl)and alkyl radicals.SKEE was shown noncytotoxic but could inhibit the generation of cellular ROS,showing protective effects in H2O2 and AAPHinduced Vero cells and UV-B irradiated HaCaT cells.SKEE also signifi cantly inhibited the release of NO of LPS-induced RAW 264.7 cells.Therefore,the polyphenol-rich extracts in ethanol and ethyl acetate showed excellent anti-oxidant and anti-infl ammatory activities,which is beneficial to the development of high-value bio-substances.
文摘Aim: To study the immune-modulating and anti-oxidant effects of beta-glucan, papaya, lactoferrin, and vitamins C and E on sperm characteristics of patients with asthenoteratozoospermia associated with leucocytosis. Methods: Fifty-one patients referred to our Sterility Center for semen analysis were selected. Sperm parameters were assessed before and after patient's treatment with beta-glucan, lactoferrin, papaya, and vitamins C and E. DNA damage was assessed by the acridine orange test and sperm structural characteristics were evaluated by transmission electron microscopy. Results: After 90 days of treatment, an increase in the percentage of morphologically normal sperm (17.0 ± 5.2 vs. 29.8 ± 6.5) and total progressive motility (19.0± 7.8 vs. 34.8 ± 6.8) were detected. Structural sperm characteristics as well as chromatin integrity were also improved after treatment. In terms of leukocyte concentration in seminal fluid, a significant reduction was recorded (2.2 ± 0.9 vs. 0.9± 0.2). Conclusion: The treatment of an inflammatory process by the synergic action of immune modulators and anti-oxidants could protect sperm during maturation and migration, leading to improved sperm function. (Asian JAndrol 2008 Mar;. 10: 201-206)
基金supported by the National Natural Science Foundation of China,No.81670846(to MMW)and 81470631(to SWY)the Natural Science Foundation of Shaanxi Province of China,No.2016SF-171(to MMW)the National Basic Research Program of China,No.2014CB542202(to SWY)
文摘Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is related to anti-oxidative stress is not clear. To reveal its mechanism, we established the optic nerve transection injury model by transecting 1 mm behind the left eyeball of adult male Sprague-Dawley rats. The rats received an intraperitoneal injection of etomidate(4 mg/kg) once per day for 7 days. The results showed that etomidate significantly enhanced the number of retinal ganglion cells retrogradely labeled with Fluorogold at 7 days after optic nerve transection. Etomidate also significantly reduced the levels of nitric oxide and malonaldehyde in the retina and increased the level of glutathione at 12 hours after optic nerve transection. Thus, etomidate can protect retinal ganglion cells after optic nerve transection in adult rats by activating an anti-oxidative stress response. The study was approved by the Animal Ethics Committee at Air Force Medical University, China(approval No. 20180305) on March 5, 2018.
文摘Pu-erh tea, a traditional Chinese beverage, has been believed to have many benefits to human health and without side effects. In this study, we systematically analyzed the main active components of Pu-erh tea and investigated its anti-obesity, anti-atherosclerotic and anti-oxidant effects using an obese rat model. Obesity was induced by feeding a high-fat diet and subsequently the experimental obese mice were fed with high-fat diet supplemented with low (2.5%), medium (5%) or high (7.5%) doses of Pu-erh tea powder for 6 weeks respectively. As result, the body weight gain of the rats was decreased by medium and high doses of Pu-erh tea treatments. Furthermore, the levels of serum total cholesterol (TC), triglyceride (TG) and atherosclerosis index (AI) were significantly lowered by Pu-erh tea compared to the control group. Conversely, high density lipoproteincholesterol (HDL-C) level of the rats was significantly elevated by Pu-erh tea treatments. In addition, Pu-erh tea treatments increased the activities of anti-oxidative enzymes such as superoxide dismutase (SOD) and glutathione peroxides (GSH-Px), whereas reduced the level of lipid peroxidation product malondialdehyde (MDA) in obese rats. Collectively, our find-ings revealed that Pu-erh tea exerts comprehensive benefits in anti-obesity, anti-atherosclerotic and anti-oxidant effects, therefore can be used as a promising functional food in obesity management.
文摘Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC) ; the anti-oxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest anti-oxidant extract of this alga, which is significantly different from activity. The highest chelation on ferrous ions is also found in the the other methanol extracts in both 3 and 24 h incubations.
文摘Two new hydralazine hydrochloride-derived Schiff bases</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span><span style="font-family:Verdana;"> (E)-1-(Phthalazin-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">1-yl)-1-[(Pyridin-2-yl)Ethylidene]Hydralazine (PPEH), and 1-[2-(1-(pyridine-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">3</span><span style="font-family:Verdana;">-yl)ethylidene)hydrazinyl]phthalazine (PEHP), were synthesized and partially characterized by spectroscopic and crystallographic methods including IR and X-ray. The single-crystal X-ray diffraction (SCXRD) analysis of PEHP indicate</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> that the hydralazine moiety of both ligands possess</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span><span style="font-family:Verdana;"> the exoc</span><span style="font-family:Verdana;">yclic C=N bond. Both, PPEH and PEHP were tested as antimicrobials and antiparasites. Just PEHP could be considered as slightly antiplasmodial and antibacterial agent. In effect, PPEH showed low antimicrobial activity against one bacterial strain with Minimum Inhibitory Concentration (MIC) value of 250 μg/ml while PEHP showed very interesting activity against 18 out of 19 bacterial strains with MIC of 31.25 </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"> 250 μg/ml compared to the standard drug, amoxicillin. PPEH and PEHP showed higher reducing activity on ferric ions compared to Vitamin C. On the other hand, both hidrazaline synthetized derivatives show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> as better reducing agents than Vitamin C on ferric ions, while again, only the PEHP show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> slightly high inhibition of lipid peroxidation using Vitamin C as standard. Regarding their catalase activity, both compounds show</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span><span style="font-family:Verdana;"> concentration dependent effect, but Vitamin C continued showing a higher stimulatory effect on the enzyme activity. Additionally, while PPEH showed less than 80% inhibition in the preliminary antiplasmodial assay and so was not considered for the dose-response studies, PEHP</span><span style="font-family:Verdana;"> displayed an inhibition percentage of 83.60% and 50% Inhibitory Concentration (IC</span><sub><span style="font-family:Verdana;vertical-align:sub;">50</span></sub><span style="font-family:Verdana;">) value of 44.13 μg/mL compared to the standard drug, artemisinin and was classified as slightly active</span><span style="font-family:Verdana;">.
基金supported by the Special Funds of Modern Agriculture Industry System Construction(CARS-50)the National Natural Science Foundation of China(3110188)the Natural Science Foundation of Shandong Province(ZR2011CQ004)
文摘In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase(SOD), catalase, glutathione reductase(GR), uric acid, vitamin E(VE) and vitamin C(VC) were more abundant in seminal plasma than in spermatozoa. The variation for each of them was specific. In seminal plasma, the activity of SOD and GR increased from November 15, November 30 to December 15, and then decreased on December 30. The concentrations of both VC and uric acid decreased during the first 3 sampling times and increased on December 30. The oxidants in seminal plasma accumulated to the highest on December 30. Lactic acid(LA) and ATP levels decreased to the lowest on December 30. The correlation analysis showed that GR had the significant positive relevance to sperm motility and VSL/VCL, while ·OH had negative relevance to them.