The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing c...The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing circuit unique to each type of sensitive elements.This paper presents an ispPAC (in-system programmable Programmable Analog Circuit) -based humidity sensor signal processing circuit designed with software method and implemented with in-system programmable simulators.Practical operation shows that humidity sensor signal processing circuits of this kind,exhibit stable and reliable performance.展开更多
This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated us...This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated using SPICE in 180 nm CMOS technology with supply voltages of ±1.25 V. The simulation results demonstrate increase in input range for FGMOS based voltage buffer and analog inverter and maximum power dissipation of 0.5 mW, 1.9 mW and 0.429 mW for FGMOS based voltage buffer, analog inverter and WTA circuits, respectively. The proposed circuits are intended to find applications in low voltage, low power consumer electronics.展开更多
Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the ...Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.展开更多
A comprehensive assessment index system was established. The mechanical recycling process of printed circuit board was evaluated according to the comprehensive evaluation index system using the fuzzy analytic hierarch...A comprehensive assessment index system was established. The mechanical recycling process of printed circuit board was evaluated according to the comprehensive evaluation index system using the fuzzy analytic hierarchy process. A process assessment software system of mechanical recycling was established to evaluate different recycling technologies. And the software system was developed in the environment of VB6.0 and Access2000.展开更多
A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the ...A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.展开更多
In order to detecting and tracking along the weld seam with rotating arc sensor in underwater welding,the highpressure water environment rotating arc welding hardware platform is established and welding experiments us...In order to detecting and tracking along the weld seam with rotating arc sensor in underwater welding,the highpressure water environment rotating arc welding hardware platform is established and welding experiments using rotating arc sensor is done. Different radius of rotating arc sensor is used. And the corresponding welding current and voltage is obtained,which is compared with the results of rotating arc sensor short-circuit process simulation model under high-pressure water environment established in this article. The results show that under high-pressure water environment,rotating arc radius should be optimized,otherwise the short-circuit-arcing cycle will transit to a short-circuit-arcing-abruption cycle,making the welding quality poor. At last the critical radius between the short-circuit-arcing cycle and short-circuit-arcing-abruption cycle under high-pressure water environment is obtained.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,lo...To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,low fabrication costs,and mass production advantage capability.Recently,we have developed additive process in fabricating circuit on flexible substrate through catalyst induced copper electroless deposition(ELD)method.The additive processes that integrated printing,activation,and metallization were applied to produce fine-line circuit with 5μm line width.The sample with ultraviolet(UV)activation shows better conductive property in comparison with the sample without activation after electroless deposited process.Accordingly,the results indicated that the reaction of catalyst induced electroless copper plating strongly depends on UV activation.The fine-line circuit exhibits a narrow line width circuit(around 5μm),lower resistance(6.2μΩ·cm),and mass production with low pollution in comparison with lithographic processes(with photoresist and acid pollution)with a high throughput system(R2R system)for the applications of double side flexible printed circuit board(FPCB).展开更多
Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analy...Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.展开更多
This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for bio...This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for biomedical engineering majors and discusses the design process.Based on these typical cases,this paper explores the secondary design for innovative engineering practice case teaching,which can promote students’understanding and mastery of digital signal processing theories,algorithms,and technologies in an intuitive,flexible,and efficient way;quickly build new innovative engineering case models and further cultivate students’engineering application ability as well as innovative thinking.展开更多
An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statisticall...An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statistically test data of probability density distribution ( PDD ) and class frequency distribution ( CFD ) of welding electrical parameters are further processed into a 7-dimensional array which is designed to describe various welding conditions, and is employed as input vector of the intelligent fuzzy c-means system. The fuzzy c-means system is used to conduct process monitoring and automatic recognition. The correct recognition rate of 24 test data under 8 kinds of welding condition is 92%.展开更多
文摘The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing circuit unique to each type of sensitive elements.This paper presents an ispPAC (in-system programmable Programmable Analog Circuit) -based humidity sensor signal processing circuit designed with software method and implemented with in-system programmable simulators.Practical operation shows that humidity sensor signal processing circuits of this kind,exhibit stable and reliable performance.
文摘This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated using SPICE in 180 nm CMOS technology with supply voltages of ±1.25 V. The simulation results demonstrate increase in input range for FGMOS based voltage buffer and analog inverter and maximum power dissipation of 0.5 mW, 1.9 mW and 0.429 mW for FGMOS based voltage buffer, analog inverter and WTA circuits, respectively. The proposed circuits are intended to find applications in low voltage, low power consumer electronics.
基金supported by the National Natural Science Foundation of China(61601501 61502521)
文摘Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.
文摘A comprehensive assessment index system was established. The mechanical recycling process of printed circuit board was evaluated according to the comprehensive evaluation index system using the fuzzy analytic hierarchy process. A process assessment software system of mechanical recycling was established to evaluate different recycling technologies. And the software system was developed in the environment of VB6.0 and Access2000.
文摘A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.
基金supported by the National Natural Science Foundation of China(Grant No.51665016)founded by the China Scholarship Council(Grant No.201508360113)
文摘In order to detecting and tracking along the weld seam with rotating arc sensor in underwater welding,the highpressure water environment rotating arc welding hardware platform is established and welding experiments using rotating arc sensor is done. Different radius of rotating arc sensor is used. And the corresponding welding current and voltage is obtained,which is compared with the results of rotating arc sensor short-circuit process simulation model under high-pressure water environment established in this article. The results show that under high-pressure water environment,rotating arc radius should be optimized,otherwise the short-circuit-arcing cycle will transit to a short-circuit-arcing-abruption cycle,making the welding quality poor. At last the critical radius between the short-circuit-arcing cycle and short-circuit-arcing-abruption cycle under high-pressure water environment is obtained.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金the ministry of economic affairs in Taiwan under the contract number:J353J11100,is gratefully acknowledged.
文摘To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,low fabrication costs,and mass production advantage capability.Recently,we have developed additive process in fabricating circuit on flexible substrate through catalyst induced copper electroless deposition(ELD)method.The additive processes that integrated printing,activation,and metallization were applied to produce fine-line circuit with 5μm line width.The sample with ultraviolet(UV)activation shows better conductive property in comparison with the sample without activation after electroless deposited process.Accordingly,the results indicated that the reaction of catalyst induced electroless copper plating strongly depends on UV activation.The fine-line circuit exhibits a narrow line width circuit(around 5μm),lower resistance(6.2μΩ·cm),and mass production with low pollution in comparison with lithographic processes(with photoresist and acid pollution)with a high throughput system(R2R system)for the applications of double side flexible printed circuit board(FPCB).
基金This work was financially supported by the National Key Science-Technology Project during the Tenth Five-Year-Plan period of China under Grant No.2001BA609A and No.2004BA615A.
文摘Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.
基金the 2021 Experimental Teaching Reform Project of Shanghai University of Medicine&Health Sciences“Digital Signal Processing Course Design”(Project Number:JG(21)04-B4-02).
文摘This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for biomedical engineering majors and discusses the design process.Based on these typical cases,this paper explores the secondary design for innovative engineering practice case teaching,which can promote students’understanding and mastery of digital signal processing theories,algorithms,and technologies in an intuitive,flexible,and efficient way;quickly build new innovative engineering case models and further cultivate students’engineering application ability as well as innovative thinking.
基金The authors are grateful to the financial support provided by the National Natural Science Foundation of China under grant No. 51005106, Research Fund for the Doctoral Program of Jiangsu Uni- versity of Science and Technology under grant No. 35060902, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statistically test data of probability density distribution ( PDD ) and class frequency distribution ( CFD ) of welding electrical parameters are further processed into a 7-dimensional array which is designed to describe various welding conditions, and is employed as input vector of the intelligent fuzzy c-means system. The fuzzy c-means system is used to conduct process monitoring and automatic recognition. The correct recognition rate of 24 test data under 8 kinds of welding condition is 92%.