The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used ...The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.展开更多
Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi...Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi-component antibacterial ions, cerous nitrate served as the additives, and the white carbon black was chosen as the carrier, which was prepared by a sol-gel method. The as-synthesized antibacterial material was characterized by inductively coupled plasma, particle size measurement instrument, scanning electron microscope and enumeration tests. The result showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the single-ion inorganic antibacterial material. In addition, the particle size of this material can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are its loose and dispersive structure, good thermal and light stability. From the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.展开更多
To synthesize three different grafting ratios of gallic acid(GA)-chitosan(CS)copolymer by a free radical mediated grafting method,which is further applied to the field of antibacterial materials,crosslinking structure...To synthesize three different grafting ratios of gallic acid(GA)-chitosan(CS)copolymer by a free radical mediated grafting method,which is further applied to the field of antibacterial materials,crosslinking structures of the compound GA-CS copolymer were characterized,fully indicating that gallic acid is resoundingly grafted onto chitosan.The grafting ratios of three copolymers GA-CS are 45.71%(Ⅰ),36.12%(Ⅱ),and 18.96%(Ⅲ)were determined by UV-Vis spectrophotometer.The minimum inhibitory concentrations of three GA-CS copolymers are 30μg/mL against Escherichia coli and are ranged from 250 to 550μg/mL against Staphylococcus aureus.By counting viable bacterial colonies,it can be found that antibacterial property is preferable by increasing the grafting ratio of GA-CS copolymers.Findings of investigation on aforementioned bacteria experiment indicate that the CFU/mL values of GA-CS(Ⅰ,Ⅱ,Ⅲ)are 2.04×10^(6),7.56×10^(6),1.48×10^(7) to Staphylococcus aureus,and 2.96×10^(6),1.01×10^(7),2.14×10^(7) to Escherichia coli after 12 h treatment.In addition,the interaction process between GA-CS copolymer and bacteria can be observed through a transmission electron microscope.The specific manifestation is that the bacterial cell membranes are ruptured after being treated with the copolymer,which causes the cell contents to flow out,and the cell morphology is shrunk and out ofshape.展开更多
A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and...A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and was finally calcined at a certain temperature. The properties and application of the composite material antibacterial were investigated. Some tests show that the as-prepared antibacterial powders modified by opaque agents such os SnO2 and ZrO2, possess beautiful white and excellent climate resistance at normal temperatures and are promising candidate materials for antibacterial plastics and dope. The result of the application in glaze indicates that Ag^+ can still exist stably, with no color change for the glaze, even being sintered at 1200℃ . SEM , EDS , antibacterial activity analyses and contrast tests reveal that the as-prepared antibacterial powders and the antibacterial glaze both have excellent antibacterial activities, without color change, in the case of dark or brightness.展开更多
A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modifi...A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modification procedure where carboxyl groups were prepared on the PET surface, a coupling agent was grafted, and the ε-polylysine was immobilized. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the fabrics, while the toluidine blue method and X-ray photoelectron spectroscopy (XPS) were used to evaluate the grafting densities. The antibacterial activities of the L-PET were investigated by using the shaking-flask method. The electron micrographs showed that the surface of the blank PET and the modified fabrics did not change. The results of XPS analysis confirmed that ε-polylysine was successfully grafted onto the surface of PET. The results of the antibacterial experiments showed that L-PET fabrics had excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, and that L-PET fabrics were stable in storage for at least two years.展开更多
The antibacterial effect of carrying silver B_2O_3-SiO_2-Na_2O glass material was studied by means of antibacterial ring, nephelometery,MIC value, thin film attachment and microcalorimetry, respectively. The experimen...The antibacterial effect of carrying silver B_2O_3-SiO_2-Na_2O glass material was studied by means of antibacterial ring, nephelometery,MIC value, thin film attachment and microcalorimetry, respectively. The experimental results of five kinds of antibacterial test methods are almost identical and can verify that carrying silver B_2O_3-SiO_2-Na_2O glass material exerts an excellent antibacterial performance. Antibacterial ring and nephelometery are simple, quick, but the precision is restrictive. MIC value, thin film attachment method and microcalorimetry can quantitatively compare the antibacterial effects of the antibacterial glass material.Compared with the traditional microbe test methods, the microcalorimetry can analyze the inhibiting effect of the cell's growth and metabolism on the antibacterial glass material by monitoring the thermal effect continuously and automatically.展开更多
Owing to its high production volume and wide range of application s,polyethylene has gained a great deal of attention,but its low surface energy and non-polar nature have limited its application in some important fiel...Owing to its high production volume and wide range of application s,polyethylene has gained a great deal of attention,but its low surface energy and non-polar nature have limited its application in some important fields.In this study,ethylene/11-iodo-1-undecene copolymers were prepared and used as the intermediates to afford a series of imidazolium-based ionomers bearing methanesulfonate(CH_(3)SO_(3)^(-)),trifluoromethanesulfonate(CF_(3)SO_(3)^(-)),or bis(trifluoromethane)sulfonimide(Tf_(2)N^(-))counteranions.The tensile test results showed that the stress-at-break(7.8-25.6 MPa)and the elongation-at-break(445%-847%)of the ionomers could be adjusted by changing the counterion species and the ionic group contents.Most importantly,the ionomers exhibited marvelous antibacterial activities against Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli).The ionomers bearing Tf_(2)N^(-)exhibited antibacterial activities>99%against both S.aureus and E.coli when ionic content reached 9.1%.The imidazolium-based ionomers prepared in this work demonstrated excellent comprehensive properties,especially highefficient and broad-spectrum antibacterial ability,exhibiting the potential fo r the application as the antibacterial materials in packaging,medical,and other fields.展开更多
Sustainable,environmentally friendly and low-energy desalination materials have important research value for the increasing demand of freshwater year by year.However,it is a huge challenge to maintain high heat energy...Sustainable,environmentally friendly and low-energy desalination materials have important research value for the increasing demand of freshwater year by year.However,it is a huge challenge to maintain high heat energy transfer efficiency without reducing the heat conversion capacity of specific solar photothermal conversion materials.Moreover,their efficiency and durability are greatly limited by the problems of seawater corrosion,oil,and bacteria pollutions.Till now,no related work has been reported to solve all the aforementioned problems via a simple four-birds-with-one-stone strategy.Herein,a class of multifunctional porous photothermal silver(Ag)modified Ti foams(Tf-TA/Ag series materials)is prepared for the development of advanced solar water evaporation devices,and provides alternative materials for alleviating freshwater crisis and treating sewage.The oil contact angle(OCA)changes from 41°to 180°,which significantly reduces the adhesion of oil.In addition,Tf-TA2/Ag sample also shows an excellent and sustained antibacterial effect,which maintains above 99.9%of antibacterial rate after repeated 5 times.The surface temperature of the Tf-TA2/Ag sample reaches 52.5℃ after simulated sun irradiation for 20 min,which is significantly higher than that of the contact groups(water:36.4℃,Ti foam:38.2℃ and Tf-TA2:40.9℃).The capacity of seawater evaporation and salt removal is enhanced due to the excellent photothermal properties,low reflectance,and uniform heat dissipation pores.The water production efficiency of Tf-TA2/Ag sample is 1.41 kg·m^(-2)·h^(-1) in artificial seawater and 0.76 kg·m^(-2)·h^(-1) in oily sewage under simulated sun irradiation.Furthermore,the hydrophilic and oleophobic properties of Tf-TA2/Ag are critical to extracting water from oil/water mixture in diverse water environments.Ultimately,this four-birds-with-one-stone approach provides a new perspective for the improvement of solar seawater desalination performance.展开更多
This paper investigated the antibacterial mechanism of the Ag-Pr-antibacterial white carbon black.The sol-gel method was used to prepare the carrier:white carbon black.Silver ion was selected to be the antibacterial i...This paper investigated the antibacterial mechanism of the Ag-Pr-antibacterial white carbon black.The sol-gel method was used to prepare the carrier:white carbon black.Silver ion was selected to be the antibacterial ion,and praseodymium nitrate was selected to be the additive.The structure and antibacterial mechanism of this new inorganic antibacterial material were characterized by laser particle size analyzer,scanning electron microscope(SEM) techniques,energy dispersive spectrum(EDS) analysis,and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the particle size of Ag-Pr-antibacterial White carbon black was less than 30 μm with a narrow size distribution.Ag+ is combined into the white carbon black by both the mode of ion exchange and the mode of adsorption process.The bacteriostasis rate of the Ag-Pr-antibacterial white carbon black was higher than that of the general Ag-antibacterial white carbon black.The antibacterial activity of Ag-Pr-antibacterial white carbon black was caused by the combination of contact and stripping antibacterial mechanism.The result also indicated that this new inorganic antibacterial material had good thermal and light stability.展开更多
A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results sh...A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results showed that the particle size of the Zn-Sm antibacterial white carbon black was significantly affected by the reaction time, reaction temperature and the stirring speed. According to analysis of variance (ANOVA), the values of the determination coefficient (R2=0.9821) and the "Pred R-Squared" of 0.8227 were in reasonable agreement with the "Adj R-Squared" of 0.9591. It was indicated that this model could be used to navigate the design space. The optimized reaction time, temperature and the stirring speed were 0.88 h, 87.83 ℃, and 473.45 r/rain, respectively. In addition, the bacteriostasis rate of the product was about 97.92%.展开更多
In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon ...In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon black containing lanthanum was investigated.Inorganic antibiotic materials comprised the carrier,the antibacterial ion and the additive.In this study,we choosed white carbon black as the carrier,which was compound by a sol-gel method.Copper ion was selected to be the antibacterial ion,and lanthanum nitrate was selected to be the additive.The as-synthesized Cu-La-antibacterial white carbon black was characterized by inductively coupled plasma(ICP),laser particle size analyzer,Fourier transform infra-red spectroscopy(FT-IR) and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the amount of antibacterial ions of the Cu-La-antibacterial white carbon black was higher than that for the general Cu-antibacterial white carbon black.Its bacteriostasis rate was about 98%(when the content of Cu2+ was about 3%),and corresponded to Ag-antibacterial white carbon black(99%).The particle size of Cu-La-antibacterial white carbon black was under 30 μm with a narrow size distribution.Copper ion was bound to white carbon black by ion exchange process.Moreover,this new inorganic antibacterial material showed promising result on the coating surface of metal.展开更多
Selenization reaction with the in situ prepared NaHSe has been successfully developed to occur in aqueous solution.The technique affords a method to upload the bioactive Se element on cotton products in semi-industria...Selenization reaction with the in situ prepared NaHSe has been successfully developed to occur in aqueous solution.The technique affords a method to upload the bioactive Se element on cotton products in semi-industrial scale.The antibacterial tests revealed that the selenized cotton possessed a potent and prolonged antimicrobial effect against both Gram-positive S.aureus and Gram-negative E.coli bacteria.This work discloses a practical method for preparing the selenium-containing antibacterial materials concisely and directly with industrial application potential.展开更多
The design of stable,efficient and processable bactericidal materials represents a significant challenge for combating multidrugresistant bacteria in a variety of engineering fields.Herein,we report a facile strategy ...The design of stable,efficient and processable bactericidal materials represents a significant challenge for combating multidrugresistant bacteria in a variety of engineering fields.Herein,we report a facile strategy for the preparation of hollow polymeric nanosphere(HPN)-supported imidazolium-based ionic liquids(denoted as HPN-ILs)with superior antimicrobial activities.HPNILs were tailored by moderate Friedel−Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene.The resultant HPN-ILs have uniform hollow spherical morphology,an adequate surface area,and excellent physicochemical stability.Furthermore,they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities.The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents.Moreover,HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices,and thus could extend their practical bactericidal application in the potential biomedical-active field.展开更多
基金National Nature Science Foundation of China (50574045)Specialized Research Fund for the Doctoral Program of Higher Education (20050674003)the Science Research Fund of Yunnan Provincial Department of Education (07Y41398)
文摘The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.
基金the National Nature Science Foundation of China (50574045)the Specialized Research Fundfor the Doctoral Program of Higher Education (20050674003)the Science Research Fund of Yunnan Provincial Department of Education(07Y41398)
文摘Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi-component antibacterial ions, cerous nitrate served as the additives, and the white carbon black was chosen as the carrier, which was prepared by a sol-gel method. The as-synthesized antibacterial material was characterized by inductively coupled plasma, particle size measurement instrument, scanning electron microscope and enumeration tests. The result showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the single-ion inorganic antibacterial material. In addition, the particle size of this material can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are its loose and dispersive structure, good thermal and light stability. From the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.
基金Funded by the Health Commission of Hubei Province Scientific Research Project(No.WJ2019H275)。
文摘To synthesize three different grafting ratios of gallic acid(GA)-chitosan(CS)copolymer by a free radical mediated grafting method,which is further applied to the field of antibacterial materials,crosslinking structures of the compound GA-CS copolymer were characterized,fully indicating that gallic acid is resoundingly grafted onto chitosan.The grafting ratios of three copolymers GA-CS are 45.71%(Ⅰ),36.12%(Ⅱ),and 18.96%(Ⅲ)were determined by UV-Vis spectrophotometer.The minimum inhibitory concentrations of three GA-CS copolymers are 30μg/mL against Escherichia coli and are ranged from 250 to 550μg/mL against Staphylococcus aureus.By counting viable bacterial colonies,it can be found that antibacterial property is preferable by increasing the grafting ratio of GA-CS copolymers.Findings of investigation on aforementioned bacteria experiment indicate that the CFU/mL values of GA-CS(Ⅰ,Ⅱ,Ⅲ)are 2.04×10^(6),7.56×10^(6),1.48×10^(7) to Staphylococcus aureus,and 2.96×10^(6),1.01×10^(7),2.14×10^(7) to Escherichia coli after 12 h treatment.In addition,the interaction process between GA-CS copolymer and bacteria can be observed through a transmission electron microscope.The specific manifestation is that the bacterial cell membranes are ruptured after being treated with the copolymer,which causes the cell contents to flow out,and the cell morphology is shrunk and out ofshape.
文摘A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and was finally calcined at a certain temperature. The properties and application of the composite material antibacterial were investigated. Some tests show that the as-prepared antibacterial powders modified by opaque agents such os SnO2 and ZrO2, possess beautiful white and excellent climate resistance at normal temperatures and are promising candidate materials for antibacterial plastics and dope. The result of the application in glaze indicates that Ag^+ can still exist stably, with no color change for the glaze, even being sintered at 1200℃ . SEM , EDS , antibacterial activity analyses and contrast tests reveal that the as-prepared antibacterial powders and the antibacterial glaze both have excellent antibacterial activities, without color change, in the case of dark or brightness.
基金Funded by the National Major Science & Technology Specific Projects (2009ZX10004-703)
文摘A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modification procedure where carboxyl groups were prepared on the PET surface, a coupling agent was grafted, and the ε-polylysine was immobilized. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the fabrics, while the toluidine blue method and X-ray photoelectron spectroscopy (XPS) were used to evaluate the grafting densities. The antibacterial activities of the L-PET were investigated by using the shaking-flask method. The electron micrographs showed that the surface of the blank PET and the modified fabrics did not change. The results of XPS analysis confirmed that ε-polylysine was successfully grafted onto the surface of PET. The results of the antibacterial experiments showed that L-PET fabrics had excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, and that L-PET fabrics were stable in storage for at least two years.
文摘The antibacterial effect of carrying silver B_2O_3-SiO_2-Na_2O glass material was studied by means of antibacterial ring, nephelometery,MIC value, thin film attachment and microcalorimetry, respectively. The experimental results of five kinds of antibacterial test methods are almost identical and can verify that carrying silver B_2O_3-SiO_2-Na_2O glass material exerts an excellent antibacterial performance. Antibacterial ring and nephelometery are simple, quick, but the precision is restrictive. MIC value, thin film attachment method and microcalorimetry can quantitatively compare the antibacterial effects of the antibacterial glass material.Compared with the traditional microbe test methods, the microcalorimetry can analyze the inhibiting effect of the cell's growth and metabolism on the antibacterial glass material by monitoring the thermal effect continuously and automatically.
基金financially supported by the National Natural Science Foundation of China(No.52130307)。
文摘Owing to its high production volume and wide range of application s,polyethylene has gained a great deal of attention,but its low surface energy and non-polar nature have limited its application in some important fields.In this study,ethylene/11-iodo-1-undecene copolymers were prepared and used as the intermediates to afford a series of imidazolium-based ionomers bearing methanesulfonate(CH_(3)SO_(3)^(-)),trifluoromethanesulfonate(CF_(3)SO_(3)^(-)),or bis(trifluoromethane)sulfonimide(Tf_(2)N^(-))counteranions.The tensile test results showed that the stress-at-break(7.8-25.6 MPa)and the elongation-at-break(445%-847%)of the ionomers could be adjusted by changing the counterion species and the ionic group contents.Most importantly,the ionomers exhibited marvelous antibacterial activities against Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli).The ionomers bearing Tf_(2)N^(-)exhibited antibacterial activities>99%against both S.aureus and E.coli when ionic content reached 9.1%.The imidazolium-based ionomers prepared in this work demonstrated excellent comprehensive properties,especially highefficient and broad-spectrum antibacterial ability,exhibiting the potential fo r the application as the antibacterial materials in packaging,medical,and other fields.
基金supported by the National Natural Science Foundation of China(Nos.52263032,62062053,22375109,52061034)the Natural Science Foundation of Inner Mongolia Province(Nos.2020BS01004,2022QN03012)Young Science and Technology Talent Program of Inner Mongolia Province(No.NJYT23001)and a Talent Development Fund of Inner Mongolia Province.
文摘Sustainable,environmentally friendly and low-energy desalination materials have important research value for the increasing demand of freshwater year by year.However,it is a huge challenge to maintain high heat energy transfer efficiency without reducing the heat conversion capacity of specific solar photothermal conversion materials.Moreover,their efficiency and durability are greatly limited by the problems of seawater corrosion,oil,and bacteria pollutions.Till now,no related work has been reported to solve all the aforementioned problems via a simple four-birds-with-one-stone strategy.Herein,a class of multifunctional porous photothermal silver(Ag)modified Ti foams(Tf-TA/Ag series materials)is prepared for the development of advanced solar water evaporation devices,and provides alternative materials for alleviating freshwater crisis and treating sewage.The oil contact angle(OCA)changes from 41°to 180°,which significantly reduces the adhesion of oil.In addition,Tf-TA2/Ag sample also shows an excellent and sustained antibacterial effect,which maintains above 99.9%of antibacterial rate after repeated 5 times.The surface temperature of the Tf-TA2/Ag sample reaches 52.5℃ after simulated sun irradiation for 20 min,which is significantly higher than that of the contact groups(water:36.4℃,Ti foam:38.2℃ and Tf-TA2:40.9℃).The capacity of seawater evaporation and salt removal is enhanced due to the excellent photothermal properties,low reflectance,and uniform heat dissipation pores.The water production efficiency of Tf-TA2/Ag sample is 1.41 kg·m^(-2)·h^(-1) in artificial seawater and 0.76 kg·m^(-2)·h^(-1) in oily sewage under simulated sun irradiation.Furthermore,the hydrophilic and oleophobic properties of Tf-TA2/Ag are critical to extracting water from oil/water mixture in diverse water environments.Ultimately,this four-birds-with-one-stone approach provides a new perspective for the improvement of solar seawater desalination performance.
基金Project supported by the Natural Science Foundation of Yunnan Province (2009ZC040M)the Science Research Fund of Yunnan Provincial De-partment of Education (07Y41398)the National College Students Innovative Experimental Foundation of China (091067437)
文摘This paper investigated the antibacterial mechanism of the Ag-Pr-antibacterial white carbon black.The sol-gel method was used to prepare the carrier:white carbon black.Silver ion was selected to be the antibacterial ion,and praseodymium nitrate was selected to be the additive.The structure and antibacterial mechanism of this new inorganic antibacterial material were characterized by laser particle size analyzer,scanning electron microscope(SEM) techniques,energy dispersive spectrum(EDS) analysis,and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the particle size of Ag-Pr-antibacterial White carbon black was less than 30 μm with a narrow size distribution.Ag+ is combined into the white carbon black by both the mode of ion exchange and the mode of adsorption process.The bacteriostasis rate of the Ag-Pr-antibacterial white carbon black was higher than that of the general Ag-antibacterial white carbon black.The antibacterial activity of Ag-Pr-antibacterial white carbon black was caused by the combination of contact and stripping antibacterial mechanism.The result also indicated that this new inorganic antibacterial material had good thermal and light stability.
基金Project supported by Yunnan Provincial Department of Education(2012Z102)
文摘A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results showed that the particle size of the Zn-Sm antibacterial white carbon black was significantly affected by the reaction time, reaction temperature and the stirring speed. According to analysis of variance (ANOVA), the values of the determination coefficient (R2=0.9821) and the "Pred R-Squared" of 0.8227 were in reasonable agreement with the "Adj R-Squared" of 0.9591. It was indicated that this model could be used to navigate the design space. The optimized reaction time, temperature and the stirring speed were 0.88 h, 87.83 ℃, and 473.45 r/rain, respectively. In addition, the bacteriostasis rate of the product was about 97.92%.
基金Project supported by the Natural Science Foundation of Yunnan Province (2009ZC040M)the Science Research Fund of Yunnan Provincial Department of Education (07Y41398)the National College Students Innovative Experimental Foundation of China (091067437)
文摘In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon black containing lanthanum was investigated.Inorganic antibiotic materials comprised the carrier,the antibacterial ion and the additive.In this study,we choosed white carbon black as the carrier,which was compound by a sol-gel method.Copper ion was selected to be the antibacterial ion,and lanthanum nitrate was selected to be the additive.The as-synthesized Cu-La-antibacterial white carbon black was characterized by inductively coupled plasma(ICP),laser particle size analyzer,Fourier transform infra-red spectroscopy(FT-IR) and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the amount of antibacterial ions of the Cu-La-antibacterial white carbon black was higher than that for the general Cu-antibacterial white carbon black.Its bacteriostasis rate was about 98%(when the content of Cu2+ was about 3%),and corresponded to Ag-antibacterial white carbon black(99%).The particle size of Cu-La-antibacterial white carbon black was under 30 μm with a narrow size distribution.Copper ion was bound to white carbon black by ion exchange process.Moreover,this new inorganic antibacterial material showed promising result on the coating surface of metal.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Nos.BK20190909,BK20181449)Jiangsu Provincial Six Talent Peaks Project(No.XCL-090)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Selenization reaction with the in situ prepared NaHSe has been successfully developed to occur in aqueous solution.The technique affords a method to upload the bioactive Se element on cotton products in semi-industrial scale.The antibacterial tests revealed that the selenized cotton possessed a potent and prolonged antimicrobial effect against both Gram-positive S.aureus and Gram-negative E.coli bacteria.This work discloses a practical method for preparing the selenium-containing antibacterial materials concisely and directly with industrial application potential.
基金supported by the Shanghai Sailing Program(No.21YF1431000)I.K.thanks to the National Research Foundation of Korea grant funded by the Korean government(MSIT)(No.2021R1A2C2003685)for financial support.
文摘The design of stable,efficient and processable bactericidal materials represents a significant challenge for combating multidrugresistant bacteria in a variety of engineering fields.Herein,we report a facile strategy for the preparation of hollow polymeric nanosphere(HPN)-supported imidazolium-based ionic liquids(denoted as HPN-ILs)with superior antimicrobial activities.HPNILs were tailored by moderate Friedel−Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene.The resultant HPN-ILs have uniform hollow spherical morphology,an adequate surface area,and excellent physicochemical stability.Furthermore,they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities.The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents.Moreover,HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices,and thus could extend their practical bactericidal application in the potential biomedical-active field.