In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. ...In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. The structure and property of the film were characterized. The results showed that the structure of SF in the film was mainly silk I. SF in the film was almost insoluble in water. The tensile strength of film with NS was significantly lower than that of films without NS. When the addition of NS was within the range of 0%-0.6%, the elongation at break had no significant difference. The antibacterial rate of the film on staphylococcus aurens and escherichia coil increased with the amount of NS. The minimum amount of NS in the fdm was O. 1% and the maximum amount was 0.5%.展开更多
The Nitrogen-doped TiO2 (N-TiO2) coatings were fabricated on 304 austenitic stainless steel (SS) substrates by oxidation of titanium nitride coatings, which were prepared by plasma surface alloying technique. Micr...The Nitrogen-doped TiO2 (N-TiO2) coatings were fabricated on 304 austenitic stainless steel (SS) substrates by oxidation of titanium nitride coatings, which were prepared by plasma surface alloying technique. Microstructural investigation, corrosion tests and antibacterial tests were conducted to study the properties of N-TiO2 coatings. Composition analysis shows that the SS substrates were shielded by the N-TiO2 coatings entirely. The N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The corrosion properties of N-TiO2 coated SS samples in Hanks' solution were investigated by a series of tests. The electrochemical measurements indicate that the corrosion potential positively shifts from -0.275 V for untrated SS to -0.267 V for N-TiO2, while the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the N-TiO2 coatings provide good protection for SS substrate against corrosion in Hanks' solution. Electrochemistry noise tests indicate that the N-TiO2 coatings effectively retard the local pitting and crevice corrosion of the SS substrate. The results of the antibacterial test reveal that N-TiO2 coatings give 304 austenitic SS an excellent antibacterial property.展开更多
基金National Natural Science Foundations of China,the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. The structure and property of the film were characterized. The results showed that the structure of SF in the film was mainly silk I. SF in the film was almost insoluble in water. The tensile strength of film with NS was significantly lower than that of films without NS. When the addition of NS was within the range of 0%-0.6%, the elongation at break had no significant difference. The antibacterial rate of the film on staphylococcus aurens and escherichia coil increased with the amount of NS. The minimum amount of NS in the fdm was O. 1% and the maximum amount was 0.5%.
基金supported by the National Natural Science Foundation of China (No. 50771070)the National High-Tech Research and Development Program of China(863 Program,No. 2007AA03Z521)the Excellent Graduate Innovational Project of Shanxi (No. 20093038)
文摘The Nitrogen-doped TiO2 (N-TiO2) coatings were fabricated on 304 austenitic stainless steel (SS) substrates by oxidation of titanium nitride coatings, which were prepared by plasma surface alloying technique. Microstructural investigation, corrosion tests and antibacterial tests were conducted to study the properties of N-TiO2 coatings. Composition analysis shows that the SS substrates were shielded by the N-TiO2 coatings entirely. The N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The corrosion properties of N-TiO2 coated SS samples in Hanks' solution were investigated by a series of tests. The electrochemical measurements indicate that the corrosion potential positively shifts from -0.275 V for untrated SS to -0.267 V for N-TiO2, while the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the N-TiO2 coatings provide good protection for SS substrate against corrosion in Hanks' solution. Electrochemistry noise tests indicate that the N-TiO2 coatings effectively retard the local pitting and crevice corrosion of the SS substrate. The results of the antibacterial test reveal that N-TiO2 coatings give 304 austenitic SS an excellent antibacterial property.