The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia ...The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.展开更多
BACKGROUND The oral cavity harbors more than 700 species of bacteria,which play crucial roles in the development of various oral diseases including caries,endodontic infection,periodontal infection,and diverse oral di...BACKGROUND The oral cavity harbors more than 700 species of bacteria,which play crucial roles in the development of various oral diseases including caries,endodontic infection,periodontal infection,and diverse oral diseases.AIM To investigate the antimicrobial action of Cymbopogon Schoenanthus and Pelargonium graveolens essential oils against Streptococcus mutans,Staphylococcus aureus,Candida albicans,Ca.dubliniensis,and Ca.krusei.METHODS Minimum microbicidal concentration was determined following Clinical and Laboratory Standards Institute documents.The synergistic antimicrobial activity was evaluated using the Broth microdilution checkerboard method,and the antibiofilm activity was evaluated with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay.Data were analyzed by one-way analysis of variance followed by the Tukey post-hoc test(P≤0.05).RESULTS C.schoenanthus and P.graveolens essential oils were as effective as 0.12%chlorhexidine against S.mutans and St.aureus monotypic biofilms after 24 h.After 24 h P.graveolens essential oil at 0.25%was more effective than the nystatin group,and C.schoenanthus essential oil at 0.25%was as effective as the nystatin group.CONCLUSION C.schoenanthus and P.graveolens essential oils are effective against S.mutans,St.aureus,Ca.albicans,Ca.dubliniensis,and Ca.krusei at different concentrations after 5 min and 24 h.展开更多
Detection of F. solani f. sp. cucurbitae causal agent of the crown and root rot disease of melon race 1, race 2 is difficult. It is based only on morphological characteristic. In this study, forty isolates identified ...Detection of F. solani f. sp. cucurbitae causal agent of the crown and root rot disease of melon race 1, race 2 is difficult. It is based only on morphological characteristic. In this study, forty isolates identified as Fusarium solani based on morphological characterization, F. solani was one of the most frequently isolated species. Molecular identification of these isolates by PCR technique using species-specific primer, indicated that thirty-two isolates, amplified product 580 bp (race 1) and two isolate amplified product 580 bp (race 2), while six isolates were not amplified with primer of both races. Production of Trichothecenes (T2-toxen, DON.) by Fusarium solani was conducted on isolates confirmed as belonging in the F. solani by PCR. The results indicated that the presence of Tri5, Tri13 genes is coding the ability of synthesis mycotoxin. In vitro, the results indicated that NPs (AgNPs, MgNPs) and chemical (Phylex) possess the antifungal properties against at various level. Treatment with (AgNPs 150 ppm, MgNPs 2%, 3% ppm) and 3% Phylex resulted in maximum inhabitation of F. solani . In vivo, five characters (height plant, hoot ant root fresh and dry weight) were measured based on the greenhouse, field experimental results. Treatment with (AgNPs, MgNPs) and Phylex had higher measured parameters than positive control.展开更多
This paper evaluated the antifungal activity and mechanism of the main active component of the root extract of Tagetes(Tagetes fungicide),and an emulsion was developed to improve water solubility of Tagetes fungicide,...This paper evaluated the antifungal activity and mechanism of the main active component of the root extract of Tagetes(Tagetes fungicide),and an emulsion was developed to improve water solubility of Tagetes fungicide,thus improving its application.The results of in vitro antifungal effect assay and scanning electron microscopy(SEM)showed that the Tagetes fungicide had a wide spectrum of fungicidal ability and the antifungal mechanism of fungicide might be associated with a change in hyphae morphology.The total protein expression of Fusarium oxysporum f.sp.Niveum changed after being cultured with fungicide,showing the decreased expression of high molecular protein while increasing expression of low molecular protein.When the hydrophilic-lipophilic balance value was 10,the emulsion was stable.The intracellular organelles of plant leaves infected by F.oxysporum f.sp.Niveum showed some changes after cultured with the fungicide emulsion.展开更多
基金Supported by National Natural Science Foundation of China(31071724)Natural Science Foundation of Jiangxi Province(2010GZN0037)~~
文摘The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.
文摘BACKGROUND The oral cavity harbors more than 700 species of bacteria,which play crucial roles in the development of various oral diseases including caries,endodontic infection,periodontal infection,and diverse oral diseases.AIM To investigate the antimicrobial action of Cymbopogon Schoenanthus and Pelargonium graveolens essential oils against Streptococcus mutans,Staphylococcus aureus,Candida albicans,Ca.dubliniensis,and Ca.krusei.METHODS Minimum microbicidal concentration was determined following Clinical and Laboratory Standards Institute documents.The synergistic antimicrobial activity was evaluated using the Broth microdilution checkerboard method,and the antibiofilm activity was evaluated with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay.Data were analyzed by one-way analysis of variance followed by the Tukey post-hoc test(P≤0.05).RESULTS C.schoenanthus and P.graveolens essential oils were as effective as 0.12%chlorhexidine against S.mutans and St.aureus monotypic biofilms after 24 h.After 24 h P.graveolens essential oil at 0.25%was more effective than the nystatin group,and C.schoenanthus essential oil at 0.25%was as effective as the nystatin group.CONCLUSION C.schoenanthus and P.graveolens essential oils are effective against S.mutans,St.aureus,Ca.albicans,Ca.dubliniensis,and Ca.krusei at different concentrations after 5 min and 24 h.
文摘Detection of F. solani f. sp. cucurbitae causal agent of the crown and root rot disease of melon race 1, race 2 is difficult. It is based only on morphological characteristic. In this study, forty isolates identified as Fusarium solani based on morphological characterization, F. solani was one of the most frequently isolated species. Molecular identification of these isolates by PCR technique using species-specific primer, indicated that thirty-two isolates, amplified product 580 bp (race 1) and two isolate amplified product 580 bp (race 2), while six isolates were not amplified with primer of both races. Production of Trichothecenes (T2-toxen, DON.) by Fusarium solani was conducted on isolates confirmed as belonging in the F. solani by PCR. The results indicated that the presence of Tri5, Tri13 genes is coding the ability of synthesis mycotoxin. In vitro, the results indicated that NPs (AgNPs, MgNPs) and chemical (Phylex) possess the antifungal properties against at various level. Treatment with (AgNPs 150 ppm, MgNPs 2%, 3% ppm) and 3% Phylex resulted in maximum inhabitation of F. solani . In vivo, five characters (height plant, hoot ant root fresh and dry weight) were measured based on the greenhouse, field experimental results. Treatment with (AgNPs, MgNPs) and Phylex had higher measured parameters than positive control.
基金the Zhejiang Public Welfare Technology Research Program(LGF21H300006)。
文摘This paper evaluated the antifungal activity and mechanism of the main active component of the root extract of Tagetes(Tagetes fungicide),and an emulsion was developed to improve water solubility of Tagetes fungicide,thus improving its application.The results of in vitro antifungal effect assay and scanning electron microscopy(SEM)showed that the Tagetes fungicide had a wide spectrum of fungicidal ability and the antifungal mechanism of fungicide might be associated with a change in hyphae morphology.The total protein expression of Fusarium oxysporum f.sp.Niveum changed after being cultured with fungicide,showing the decreased expression of high molecular protein while increasing expression of low molecular protein.When the hydrophilic-lipophilic balance value was 10,the emulsion was stable.The intracellular organelles of plant leaves infected by F.oxysporum f.sp.Niveum showed some changes after cultured with the fungicide emulsion.